×

MOP – algorithmic modality analysis for parabolic actions. (English) Zbl 1050.20033

Summary: Let \(G\) be a simple algebraic group and \(P\) a parabolic subgroup of \(G\). The group \(P\) acts on the Lie algebra \({\mathfrak p}_u\) of its unipotent radical \(P_u\) via the adjoint action. The modality of this action, \(\text{mod}(P:{\mathfrak p}_u)\), is the maximal number of parameters upon which a family of \(P\)-orbits on \({\mathfrak p}_u\) depends. More generally, we also consider the modality of the action of \(P\) on an invariant subspace \(\mathfrak n\) of \({\mathfrak p}_u\), that is \(\text{mod}(P:{\mathfrak n})\). In this note we describe an algorithmic procedure, called MOP, which allows one to determine upper bounds for \(\text{mod}(P:{\mathfrak n})\).
The classification of the parabolic subgroups \(P\) of exceptional groups with a finite number of orbits on \({\mathfrak p}_u\) was achieved with the aid of MOP. We describe the results of this classification in detail in this paper. In view of the results of L. Hille and G. Röhrle [Transform. Groups 4, No. 1, 35-52 (1999; Zbl 0924.20035)], this completes the classification of parabolic subgroups of all reductive algebraic groups with this finiteness property.
Besides this result we present other applications of MOP, and illustrate an example.

MSC:

20G15 Linear algebraic groups over arbitrary fields
17B45 Lie algebras of linear algebraic groups
20G05 Representation theory for linear algebraic groups
14L30 Group actions on varieties or schemes (quotients)
68W30 Symbolic computation and algebraic computation

Citations:

Zbl 0924.20035

Software:

GAP

References:

[1] Azad H., Com. in Algebra 18 pp 551– (1990) · Zbl 0717.20029 · doi:10.1080/00927879008823931
[2] Bala P., Math. Proc. Cambridge Phil. Soc. 80 pp 1– (1976) · Zbl 0364.22007 · doi:10.1017/S0305004100052610
[3] Borel, A. 1991.Linear Algebraic Groups, Graduate Textbooks in Mathematics126New York-Berlin: Springer Verlag. [Borel 91]
[4] Bourbaki N., Groupes et algèbres de Lie, Chapitres 4,5 et 6 (1975) · Zbl 0329.17002
[5] Brüstle T., J. Algebra 226 pp 347– (2000) · Zbl 0968.20023 · doi:10.1006/jabr.1999.8180
[6] Bürgstein H., Comp. Math. 61 pp 3– (1987)
[7] Dynkin E. B., Amer. Math. Soc. Transl. Ser. 2 6 pp 111– (1957)
[8] GAP–Groups, Algorithms, and Programming, Version 3.4.4 (1997)
[9] Geek M., AAECC 7 pp 175– (1996) · Zbl 0847.20006 · doi:10.1007/BF01190329
[10] Hille L., Transformation Groups 4 (1) pp 35– (1999) · Zbl 0924.20035 · doi:10.1007/BF01236661
[11] Jürgens U., Geom. Dedicate 73 pp 317– (1998) · Zbl 0943.20042 · doi:10.1023/A:1005055804039
[12] Jürgens U., The MOP Manual (2001)
[13] Kashin V. V., Problems in Group Theory and Homological algebra, Yaroslavl’. pp 141– (1990)
[14] Popov V. L., Indag. Math. N. S. 1 pp 125– (1997) · Zbl 0905.20029 · doi:10.1016/S0019-3577(97)83356-3
[15] Popov V. L., Australian Mathematical Society Lecture Series 9, in: Algebraic Groups and Lie Groups pp 297– (1997)
[16] Popov V. L., Encyclopaedia of Math. Sci.: Algebraic Geometry IV. 55 pp 123– (1994)
[17] Richardson R. W., Bull. London Math. Soc. 6 pp 21– (1974) · Zbl 0287.20036 · doi:10.1112/blms/6.1.21
[18] Richardson R. W., Indag. Math. 88 pp 337– (1985) · doi:10.1016/1385-7258(85)90045-9
[19] Röhrle G., Geom. Dedicata 60 pp 163– (1996)
[20] Röhrle G., Indag. Math. N.S. 8 (4) pp 549– (1997) · Zbl 0906.20033 · doi:10.1016/S0019-3577(97)81557-1
[21] Röhrle G., Manuscripta Math. 98 pp 9– (1999) · Zbl 0933.20037 · doi:10.1007/s002290050121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.