The smallest Moufang loop revisited. (English) Zbl 1050.20046

O. Chein and H. O. Pflugfelder proved that the smallest nonassociative Moufang loop is of order 12 and is unique up to isomorphism. In this paper a new, visual description of this loop is given.


20N05 Loops, quasigroups
Full Text: DOI arXiv


[1] O. Chein, Moufang Loops of Small Order I, Trans. Amer. Math. Soc. 188 (1974), 31–51. · Zbl 0286.20088 · doi:10.1090/S0002-9947-1974-0330336-3
[2] O. Chein, Moufang Loops of Small Order, Memoirs of the American Mathematical Society, Volume 13, Issue 1, Number 197 (1978). · Zbl 0378.20053
[3] O. Chein, H. O. Pflugfelder, The smallest Moufang loop, Arch. Math. 22 (1971), 573–576. · Zbl 0241.20061 · doi:10.1007/BF01222620
[4] K. Kunen, Moufang Quasigroups, J. Algebra 183 (1996), no 1, 231–234. · Zbl 0855.20056 · doi:10.1006/jabr.1996.0216
[5] H. O. Pflugfelder, Quasigroups and Loops: Introduction, (Sigma series in pure mathematics; 7), Heldermann Verlag Berlin (1990). · Zbl 0715.20043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.