zbMATH — the first resource for mathematics

Generalized fractal dimensions: equivalences and basic properties. (English) Zbl 1050.28006
Given a positive probability Borel measure \(\mu\), define for any \(q\in {\mathbf R} \) and \(\varepsilon \in (0,1)\), the integral \( I_\mu(q, \varepsilon) =\int_{\text{supp }\mu} \mu([x-\varepsilon, x+\varepsilon])^{q-1} d\mu(x)\) and the functions \[ \tau_\mu^-(q) =\liminf_{s\downarrow 0}\frac{\log I_\mu(q,\varepsilon)}{-\log \varepsilon}, \quad \quad \tau_\mu^+(q) =\limsup_{s\downarrow 0}\frac{\log I_\mu(q,\varepsilon)}{-\log \varepsilon}. \] The lower and upper generalized fractal dimensions of \(\mu\) are, respectively, defined for \(q\in {\mathbf R}\setminus \{1\} \) as \[ D_\mu^-(q) =\liminf_{s\downarrow 0}\frac{\log I_\mu(q,\varepsilon)}{(q-1)\log \varepsilon}, \qquad D_\mu^+(q) =\limsup_{s\downarrow 0}\frac{\log I_\mu(q,\varepsilon)}{(q-1)\log \varepsilon}. \] The entropy dimensions are \[ D_\mu^-(1) =\liminf_{s\downarrow 0}\frac{\int_{\text{supp\,}\mu} \log(\mu[x-\varepsilon, x+\varepsilon]) \,d\mu(x)}{\log \varepsilon}, \] \[ D_\mu^+(1) =\limsup_{s\downarrow 0}\frac{\int_{\text{supp\,}\mu} \log(\mu[x-\varepsilon, x+\varepsilon])\, d\mu(x)}{\log \varepsilon}. \] Note that in the literature the above dimensions are often referred to as Hentschel-Procaccia generalized dimensions. In the present article the authors establish some basic properties of \(\tau_\mu^{\pm}(q)\) and \(D_\mu^{\pm}(q)\) for \(q\in {\mathbf R}\). They first give the equivalence of the Hentschel-Procaccia dimensions with the Rényi dimensions and the mean-\(q\) dimensions for \(q>0\). Then they use these relations to study for which set of \(q'\)s the functions \(\tau_\mu^{\pm}(q)\), \(D_\mu^{\pm}(q)\) are finite and \(D_\mu^{\pm}(q)\in [0,1]\) and further prove some regularity properties for \(\tau_\mu^{\pm}(q)\) and \(D_\mu^{\pm}(q)\). They also give some estimates for these functions, in particular estimates on their behavior at \(\pm\infty\), as well as for the dimensions corresponding to convolution of two measures. Finally, as an illustration of their behavior, the authors provide calculations of the generalized fractal dimension \(D_\mu^{\pm}(q)\) for some specific examples.

28A80 Fractals
28A78 Hausdorff and packing measures
Full Text: DOI
[1] Barbaroux, J.-M.; Combes, J.-M.; Montcho, R., Remarks on the relation between quantum dynamics and fractal spectra, J. math. anal. appl., 213, 698-722, (1997) · Zbl 0893.47048
[2] Barbaroux, J.-M.; Germinet, F.; Tcheremchantsev, S., Nonlinear variation of diffusion exponents in quantum dynamics, C. R. acad. sci. Paris, Sér. I, 330, 409-414, (2000) · Zbl 0963.81024
[3] J.-M. \scBarbaroux, F. \scGerminet, S. \scTcheremchantsev, Fractal dimensions and the phenomenon of intermittency in quantum dynamics, to appear in Duke Math. J
[4] Barreira, L.; Pesin, Y.B.; Schmeling, J., Dimension and product structure of hyperbolic measures, Ann. of math., 149, 755-783, (1999) · Zbl 0977.37011
[5] A. \scBatakis, Y. \scHeurteaux, On relations between entropy and Hausdorff dimension of measures, Preprint, Orsay, 1998
[6] Bellissard, J.; Schulz-Baldes, H., Subdiffusive quantum transport for 3-D Hamiltonians with absolutely continuous spectra, J. statist. phys., 99, 587-594, (2000) · Zbl 0962.82030
[7] Combes, J.-M., Connection between quantum dynamics and spectral properties of time evolution operators, (), 59-69
[8] J.M. \scCombes, G. \scMantica, Fractal dimensions and quantum evolution associated with sparse potential Jacobi matrices, Preprint
[9] Cutler, C.D., Some results on the behaviour and estimation of the fractal dimensions of distributions on attractors, J. statist. phys., 62, 3/4, 651-708, (1991) · Zbl 0738.58029
[10] Falconer, K.J., The geometry of fractal sets, Cambridge tracts in mathematics, no. 85, (1985), Cambridge Univ. Press UK · Zbl 0587.28004
[11] Falconer, K.J., Fractal geometry – mathematical foundations and application, (1990), Wiley New York
[12] Falconer, K.J., Techniques in fractal geometry, (1997), Wiley New York · Zbl 0869.28003
[13] Grassberger, P.; Procaccia, I., Measuring the strangeness of strange attractors, Phys. D, 9, 189-208, (1983) · Zbl 0593.58024
[14] Guarneri, I., Spectral properties of quantum diffusion on discrete lattices, Europhys. lett., 10, 95-100, (1989), On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett. 21 (1993) 729-733
[15] Guarneri, I., Singular continuous spectra and discrete wave packet dynamics, J. math. phys., 37, 5195-5206, (1996) · Zbl 0894.46051
[16] Guarneri, I.; Schulz-Baldes, H., Lower bounds on wave packet propagation by packing dimensions of spectral measures, Math. phys. elec. J., 5, (1999), paper 1 · Zbl 0910.47059
[17] Guarneri, I.; Schulz-Baldes, H., Intermittent lower bound on quantum diffusion, Lett. math. phys., 49, 317-324, (1999) · Zbl 1001.81019
[18] Guerin, C.A.; Holschneider, M., Three equivalent definitions of the correlation dimension of a probability measure, J. statist. phys., 29, 7651-7667, (1996)
[19] Guysinsky, M.; Yaskolko, S., Coincidence of various dimensions associated with metrics and measures on metric spaces, Discrete contin. dynam. systems, 3, 591-603, (1997) · Zbl 0948.37014
[20] Halsey, T.C.; Jensen, M.; Kaddanov, L.; Procaccia, I.; Schraiman, B., Fractal measures and their singularities: the characterization of strange sets, Phys. rev. A, 33, 1141-1151, (1986) · Zbl 1184.37028
[21] Hentschel, H.G.E.; Procaccia, I., The infinite number of generalized dimensions of fractals and strange attractors, Phys. D, 8, 435-444, (1983) · Zbl 0538.58026
[22] Heurteaux, Y., Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. inst. H. Poincaré, 34, 3, 309-338, (1998) · Zbl 0903.28005
[23] Hu, X.; Taylor, J., Fractal properties of products and projections of measures in \(R\^{}\{d\}\), Math. proc. camb. phil. soc., 115, 527-544, (1994) · Zbl 0810.28005
[24] Last, Y., Quantum dynamics and decomposition of singular continuous spectrum, J. funct. anal., 142, 406-445, (1996) · Zbl 0905.47059
[25] Lau, K.S., Fractal measures and Mean p-variations, J. funct. anal., 108, 427-457, (1992) · Zbl 0767.28007
[26] J. , V. , S. \scVaienti, Multifractal spectrum via return times, Preprint, 2000, mp-arc 00-232
[27] Olsen, L., A multifractal formalism, Adv. math., 116, 82-195, (1995) · Zbl 0841.28012
[28] Olsen, L., Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures, Math. scand., 86, 109-129, (2000) · Zbl 0968.28004
[29] Pesin, Y.B., Dimension theory in dynamical systems: contemporary views and applications, (1996), Univ. Chicago Press
[30] Pesin, Y.B.; Weiss, H., On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the eckmann – ruelle conjecture, Comm. math. phys., 182, 105-153, (1996) · Zbl 0878.28006
[31] Pesin, Y.B.; Weiss, H., The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples, Chaos, 7, 89-106, (1997) · Zbl 0933.37020
[32] Pesin, Y.B.; Weiss, H., A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions, J. statist. phys., 86, 233-275, (1997) · Zbl 0985.37040
[33] Schulz-Baldes, H.; Bellissard, J., Anomalous transport: a mathematical framework, Rev. math. phys., 10, 1-46, (1998) · Zbl 0908.47066
[34] Takens, F.; Verbitskii, E.A., Multifractal analysis of local entropies for expansive homeomorphisms with specification, Comm. math. phys., 203, 593-612, (1999) · Zbl 0955.37002
[35] S. \scTcheremchantsev, in preparation
[36] Verbitskii, E.A.; Takens, F., Generalized entropies, Math. notes, 63, 112-115, (1998) · Zbl 0929.37001
[37] Young, L., Dimension, entropy and Lyapounov exponents, Ergodic theory dynamical systems, 2, 109-124, (1982) · Zbl 0523.58024
[38] F. Germinet, S. Tcheremchantsev, in preparation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.