Yampolsky, Michael; Zakeri, Saeed Mating Siegel quadratic polynomials. (English) Zbl 1050.37022 J. Am. Math. Soc. 14, No. 1, 25-78 (2001). Summary: Let \(F\) be a quadratic rational map of the sphere which has two fixed Siegel disks with bounded type rotation numbers \(\theta\) and \(\nu\). Using a new degree \(3\) Blaschke product model for the dynamics of \(F\) and an adaptation of complex a priori bounds for renormalization of critical circle maps, we prove that \(F\) can be realized as the mating of two Siegel quadratic polynomials with the corresponding rotation numbers \(\theta\) and \(\nu\). Cited in 19 Documents MSC: 37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets 37F45 Holomorphic families of dynamical systems; the Mandelbrot set; bifurcations (MSC2010) 37F50 Small divisors, rotation domains and linearization in holomorphic dynamics Keywords:Holomorphic dynamics; rational map; Siegel disk; mating; Julia set PDF BibTeX XML Cite \textit{M. Yampolsky} and \textit{S. Zakeri}, J. Am. Math. Soc. 14, No. 1, 25--78 (2001; Zbl 1050.37022) Full Text: DOI arXiv References: [1] Lars Ahlfors and Lipman Bers, Riemann’s mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385 – 404. · Zbl 0104.29902 [2] Pau Atela, Bifurcations of dynamic rays in complex polynomials of degree two, Ergodic Theory Dynam. Systems 12 (1992), no. 3, 401 – 423. · Zbl 0768.58034 [3] Shaun Bullett and Pierrette Sentenac, Ordered orbits of the shift, square roots, and the devil’s staircase, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 3, 451 – 481 (English, with English and French summaries). · Zbl 0823.58012 [4] E. de Faria and W. de Melo, Rigidity of critical circle mappings I, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 4, 339-392. CMP 2000:05 · Zbl 0988.37047 [5] A. Douady, Algorithms for computing angles in the Mandelbrot set, in “Chaotic Dynamics and Fractals,” ed. Barnsley and Demko, Academic Press (1986) 155-168. CMP 19:01 · Zbl 0603.30030 [6] Adrien Douady, Systèmes dynamiques holomorphes, Bourbaki seminar, Vol. 1982/83, Astérisque, vol. 105, Soc. Math. France, Paris, 1983, pp. 39 – 63 (French). · Zbl 0532.30019 [7] Adrien Douady, Disques de Siegel et anneaux de Herman, Astérisque 152-153 (1987), 4, 151 – 172 (1988) (French). Séminaire Bourbaki, Vol. 1986/87. · Zbl 0638.58023 [8] Adrien Douady and Clifford J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), no. 1-2, 23 – 48. · Zbl 0615.30005 [9] Adrien Douady and John H. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta Math. 171 (1993), no. 2, 263 – 297. · Zbl 0806.30027 [10] A. Epstein, Counterexamples to the quadratic mating conjecture, Manuscript in preparation. [11] Peter Haïssinsky, Chirurgie parabolique, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 2, 195 – 198 (French, with English and French summaries). · Zbl 0915.30024 [12] M. Herman, Conjugaison quasisymetrique des homeomorphismes analytique des cercle a des rotations, Manuscript. [13] Jiaqi Luo, Combinatorics and holomorphic dynamics: Captures, matings, Newton’s method, Thesis, Cornell University, 1995. [14] M.Yu. Lyubich, The dynamics of rational transforms: The topological picture, Russian Math. Surveys 41 (1986) 43-117. · Zbl 0619.30033 [15] Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. · Zbl 0807.30013 [16] Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. · Zbl 0791.58003 [17] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, Vieweg, 1999 (Available from the American Mathematical Society). CMP 2000:03 · Zbl 0946.30013 [18] Henk Broer and Mark Levi, Geometrical aspects of stability theory for Hill’s equations, Arch. Rational Mech. Anal. 131 (1995), no. 3, 225 – 240. · Zbl 0840.34047 [19] J. Milnor, Periodic orbits, external rays, and the Mandelbrot set: An expository account, Asterisque 261 (2000). CMP 2000:12 · Zbl 0941.30016 [20] J. Milnor, Pasting together Julia sets - a worked out example of mating, to appear. · Zbl 1115.37051 [21] R.L. Moore, Concerning upper semi-continuous collection of continua, Trans. Amer. Math. Soc., 27 (1925) 416-428. CMP 95:18 [22] Carsten Lunde Petersen, Local connectivity of some Julia sets containing a circle with an irrational rotation, Acta Math. 177 (1996), no. 2, 163 – 224. · Zbl 0884.30020 [23] M. Rees, Realization of matings of polynomials as rational maps of degree two, Manuscript, 1986. [24] Mary Rees, A partial description of parameter space of rational maps of degree two. I, Acta Math. 168 (1992), no. 1-2, 11 – 87. · Zbl 0774.58035 [25] M. Shishikura, On a theorem of M. Rees for matings of polynomials, London Math. Soc. Lecture Note Ser., 274. CMP 2000:14 · Zbl 1062.37039 [26] C. L. Siegel, Iteration of analytic functions, Ann. of Math., 43 (1942) 607-612. · Zbl 0061.14904 [27] M. Shishikura and L. Tan, A family of cubic rational maps and matings of cubic polynomials, Experiment. Math., 9 (2000) 29-53. CMP 2000:12 · Zbl 0969.37020 [28] Grzegorz Świątek, Rational rotation numbers for maps of the circle, Comm. Math. Phys. 119 (1988), no. 1, 109 – 128. · Zbl 0656.58017 [29] Lei Tan, Matings of quadratic polynomials, Ergodic Theory Dynam. Systems 12 (1992), no. 3, 589 – 620. · Zbl 0756.58024 [30] Lei Tan and Yongcheng Yin, Local connectivity of the Julia set for geometrically finite rational maps, Sci. China Ser. A 39 (1996), no. 1, 39 – 47. · Zbl 0858.30021 [31] Michael Yampolsky, Complex bounds for renormalization of critical circle maps, Ergodic Theory Dynam. Systems 19 (1999), no. 1, 227 – 257. · Zbl 0918.58049 [32] Jean-Christophe Yoccoz, Il n’y a pas de contre-exemple de Denjoy analytique, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 7, 141 – 144 (French, with English summary). · Zbl 0573.58023 [33] J.C. Yoccoz, Petits Diviseurs en Dimension 1, Astérisque 231, 1995. · Zbl 0836.30001 [34] S. Zakeri, Biaccessibility in quadratic Julia sets I-II, to appear in Erg. Th. and Dyn. Sys. · Zbl 0970.37037 [35] S. Zakeri, Dynamics of cubic Siegel polynomials, Comm. Math. Phys., 206 (1999) 185-233. CMP 2000:07 · Zbl 0936.37019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.