Semi-Darboux motions of rational curves with equivalent trajectories. (English) Zbl 1050.53018

Semi-Darboux motion in complex projective space \(\mathbb P^n\) is characterized by the existence of a rational curve \(C\subset\mathbb P^n\) whose points have trajectories in a proper subspace of \(\mathbb P^n\). The author characterizes semi-Darboux motions with equivalent trajectories. The results obtained are closely related to the author’s paper [J. Geom. 73, No.1-2, 134–147 (2002; Zbl 1006.51016)].


53A17 Differential geometric aspects in kinematics
51N15 Projective analytic geometry


Zbl 1006.51016
Full Text: DOI


[1] Darbouxsche Doppelverhältnisscharen auf Regelflächen.Österr. Akad. Wiss. Math- Natur. Kl. Sitzungsber. II198 (4-7), 159-169. · Zbl 0703.53010
[2] Rath, W., Darboux motions in threedimensional projective space, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 201, 59-87 (1992) · Zbl 0803.53012
[3] Rath, W., Matrix groups and kinematics in projective spaces, Abh. Math. Sem. Univ. Hamburg, 63, 177-196 (1993) · Zbl 0791.53014 · doi:10.1007/BF02941341
[4] Rath, W., A kinematic mapping for projective and affine motions and some applications, World Scientific, 8, 292-391 (1996) · Zbl 0956.53012
[5] H.-P. Schröcker Dievon drei projektiv gekoppelten Kegelschnitten erzeugte Ebenenmenge. PhD thesis, Technical University Graz, 2000.
[6] Schröcker, H.-P., Generatrices of rational curves, Journal of Geometry, 73, 134-147 (2002) · Zbl 1006.51016 · doi:10.1007/s00022-002-8588-2
[7] _The geometry of rational parameterized representations.Journal of Geometry (2003), accepted for publication.
[8] Vogler, H., Räumliche Zwangläufe mit ebenen Bahnkurven, Bericht d. Math, statist. Sektion des Forschungszentrums Graz, 162, 1-17 (1981) · Zbl 0472.53016
[9] Vogler, H., Zwangläufe im höchstens vierdimensionalen euklidischen RaumE^v mit affin durchlaufenen Bahnpunktsmengen, Bericht d. Math, statist. Sektion des Forschungszentrums Graz, 304, 128-143 (1989) · Zbl 0699.53011
[10] -H. Vogler, Affine Bewegungen eines Kegelschnitts mit ebenen Bahnen. Public talk in Seggauberg, July 1993.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.