zbMATH — the first resource for mathematics

On explicit strong solution of Itô-SDE’s and the Donsker delta function of a diffusion. (English) Zbl 1050.60065
Itô-type stochastic differential equations are proved to admit explicit strong solutions in the language of Wick exponentials. Connections with the general stochastic transport equation and Donsker’s delta function are obtained.

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H40 White noise theory
Full Text: DOI
[1] DOI: 10.1023/A:1011259820029 · Zbl 0993.91022
[2] Benth F. E., Stochastics 51 pp 195– · Zbl 1371.82072
[3] Di Nunno G., J. Funct. Anal.
[4] DOI: 10.1017/CBO9780511666223
[5] DOI: 10.1007/978-94-017-3680-0
[6] DOI: 10.1007/978-1-4684-9215-6
[7] DOI: 10.2307/3213587 · Zbl 0528.60055
[8] DOI: 10.1007/BFb0099433 · Zbl 1320.60126
[9] Kondratiev Y., Meth. Funct. Anal. Topology 3 pp 28–
[10] DOI: 10.1007/978-1-4612-0949-2
[11] Kuo H. H., White Noise Distribution Theory; Prob and Stoch; Series (1996)
[12] Kallianpur G., IMS Lecture Notes-Monograph series 26, in: Stochastic Differential Equations in Infinite Dimensional Spaces (1995)
[13] Mataramvura S., Ann. Inst. Henri Poincaré
[14] DOI: 10.1137/S0036141096299065 · Zbl 0911.60045
[15] DOI: 10.1016/0022-1236(89)90098-0 · Zbl 0682.60046
[16] Obata N., Lecture Notes in Math. 1577, in: White Noise Calculus and Fock Space (1994) · Zbl 0814.60058
[17] DOI: 10.1007/BF00275516 · Zbl 0858.60022
[18] DOI: 10.1007/s002459900083 · Zbl 0908.60056
[19] Yu Veretennikov A., Math. USSR Sbor. 29 pp 229–
[20] Watanabe S., Theory and Application of Random Fields (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.