Andreev, D. B.; Elesin, M. A.; Krylov, E. A.; Kuznetsov, A. V.; Zeifman, A. I. Ergodicity and stability of non-stationary queueing system. (Russian, English) Zbl 1050.60075 Teor. Jmovirn. Mat. Stat. 68, 1-10 (2003); translation in Theory Probab. Math. Stat. 68, 1-10 (2004). The authors deal with the non-homogeneous Markov process (birth and death process) \(X(t)\), \(t\geq0\), with the intensity matrix \(A(t)=\{a_{ij}(t)\}\), \(t\geq0\), \[ a_{ij}(t)= \begin{cases} \lambda_{i-1}(t),&\text{if }j=i-1,\\ \mu_{i+1}(t),&\text{if }j=i+1,\\ -(\lambda_{i}(t)+\mu_{i}(t)),&\text{if }j=i,\\ 0,&\text{if }\| i-j\|>1, \end{cases} \]where \(\lambda_{n}(t)\), \(n=0,1,\ldots,N\), is the intensity of birth; \(\mu_{n}(t)\), \(t\geq0\), \(n=0,1,\ldots,N\), is the intensity of death. The authors consider the case \(\lambda_{n}(t)=\lambda_{n}a(t)\), \(\mu_{n}(t)=\mu_{n}b(t)\), \(t\geq0,\;n=0,1,\ldots,N\). The problems of ergodicity and stability for \(X(t)\) are investigated. As examples queueing systems close to \(M_{t}/M_{t}/S\) and \(M_{t}/M_{t}/S/0\) are considered. Reviewer: A. D. Borisenko (Kyïv) Cited in 1 Document MSC: 60J27 Continuous-time Markov processes on discrete state spaces 60J80 Branching processes (Galton-Watson, birth-and-death, etc.) 60K25 Queueing theory (aspects of probability theory) Keywords:ergodicity; stability; non-stationary queueing system; intensity matrix PDFBibTeX XMLCite \textit{D. B. Andreev} et al., Teor. Ĭmovirn. Mat. Stat. 68, 1--10 (2003; Zbl 1050.60075); translation in Theory Probab. Math. Stat. 68, 1--10 (2004)