Solution and hidden supersymmetry of a Dirac oscillator. (English) Zbl 1050.81524

Phys. Rev. Lett. 64, No. 14, 1643-1645 (1990); errata ibid. 65, No. 16, 2085 (1990).
Summary: In this paper we found, by explicitly solving the Dirac equation, the complete energy spectrum and the corresponding eigenfunctions, for both the positive- and the negative-energy states, of the recently proposed Dirac oscillator. We found the electromagnetic potential associated with its interaction term. This exactly soluble problem has a hidden supersymmetry responsible for the special properties of its energy spectrum. We discuss the implications of this supersymmetry in the stability of the Dirac sea and we calculate the related superpotential.


81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
Full Text: DOI


[1] M. N. Baibich, Phys. Rev. Lett. 61 pp 2472– (1988)
[2] A. Barthélémy, J. Appl. Phys. 67 pp 5908– (1990)
[3] G. Binach, Phys. Rev. B 39 pp 4828– (1989)
[4] J. J. Krebs, Phys. Rev. Lett. 63 pp 1645– (1989)
[5] S. S. P. Parkin, Phys. Rev. Lett. 64 pp 2304– (1990)
[6] K. Fuchs, Proc. Cambridge Philos. Soc. 34 pp 100– (1938)
[7] E. H. Sondheimer, Adv. Phys. 1 pp 1– (1952)
[8] R. F. Carcia, J. Appl. Phys. 54 pp 2000– (1983)
[9] R. E. Camley, Phys. Rev. Lett. 63 pp 664– (1989)
[10] M. V. Jarić, Phys. Rev. Lett. 57 pp 2760– (1986)
[11] G. Fishman, Phys. Rev. Lett. 62 pp 1302– (1989)
[12] A. Fert, J. Phys. F 6 pp 849– (1976)
[13] I. A. Campbell, in: Ferromagnetic Materials (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.