×

zbMATH — the first resource for mathematics

Self-dual Chern-Simons vortices. (English) Zbl 1050.81595
Summary: We study vortex solutions in an Abelian Chern-Simons theory with spontaneous symmetry breaking. We show that for a specific choice of the Higgs potential the vortex satisfies a set of Bogomol’nyi-type, or “self-duality,” equations.

MSC:
81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Jackiw, Phys. Rev. D 23 pp 2291– (1981) · doi:10.1103/PhysRevD.23.2291
[2] J. Schonfeld, Nucl. Phys. B185 pp 157– (1981) · doi:10.1016/0550-3213(81)90369-2
[3] S. Deser, Phys. Rev. Lett. 48 pp 975– (1982) · doi:10.1103/PhysRevLett.48.975
[4] S. Deser, Ann. Phys. (N.Y.) 140 pp 372– (1982) · doi:10.1016/0003-4916(82)90164-6
[5] S. Deser, Ann. Phys. (N.Y.) 185 pp 406– (1988)
[6] R. Pisarski, Phys. Rev. D 32 pp 2081– (1985) · doi:10.1103/PhysRevD.32.2081
[7] S. Paul, Phys. Lett. 171B pp 244– (1986) · doi:10.1016/0370-2693(86)91541-8
[8] S. Paul, Phys. Lett. 174B pp 420– (1986) · doi:10.1016/0370-2693(86)91028-2
[9] S. Paul, Phys. Lett. B 182 pp 414– (1986)
[10] H. Nielsen, Nucl. Phys. B61 pp 45– (1973) · doi:10.1016/0550-3213(73)90350-7
[11] , B. Julia and A. Zee, Phys. Rev. D 11 pp 2227– (1975)
[12] C. Hagen, Ann. Phys. (N.Y.) 157 pp 342– (1984) · doi:10.1016/0003-4916(84)90064-2
[13] C. Hagen, Phys. Rev. D 31 pp 2135– (1985) · doi:10.1103/PhysRevD.31.2135
[14] S. Deser, Mod. Phys. Lett. A 4 pp 2123– (1989) · doi:10.1142/S0217732389002380
[15] G. Dunne, Ann. Phys. (N.Y.) 194 pp 197– (1989) · doi:10.1016/0003-4916(89)90036-5
[16] E. B. Bogomol’nyi, Sov. J. Nucl. Phys. 24 pp 449– (1976)
[17] H. deVega, Phys. Rev. D 14 pp 1100– (1976) · doi:10.1103/PhysRevD.14.1100
[18] L. Jacobs, Phys. Rev. B 19 pp 4486– (1978) · doi:10.1103/PhysRevB.19.4486
[19] E. Weinberg, Phys. Rev. D 19 pp 3008– (1979) · doi:10.1103/PhysRevD.19.3008
[20] J. Hong, Phys. Rev. Lett. 64 pp 2230– (1990) · Zbl 1014.58500 · doi:10.1103/PhysRevLett.64.2230
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.