Jackiw, R.; Weinberg, Erick J. Self-dual Chern-Simons vortices. (English) Zbl 1050.81595 Phys. Rev. Lett. 64, No. 19, 2234-2237 (1990). Summary: We study vortex solutions in an Abelian Chern-Simons theory with spontaneous symmetry breaking. We show that for a specific choice of the Higgs potential the vortex satisfies a set of Bogomol’nyi-type, or “self-duality,” equations. Cited in 1 ReviewCited in 203 Documents MSC: 81T13 Yang-Mills and other gauge theories in quantum field theory PDF BibTeX XML Cite \textit{R. Jackiw} and \textit{E. J. Weinberg}, Phys. Rev. Lett. 64, No. 19, 2234--2237 (1990; Zbl 1050.81595) Full Text: DOI OpenURL References: [1] R. Jackiw, Phys. Rev. D 23 pp 2291– (1981) [2] J. Schonfeld, Nucl. Phys. B185 pp 157– (1981) [3] S. Deser, Phys. Rev. Lett. 48 pp 975– (1982) [4] S. Deser, Ann. Phys. (N.Y.) 140 pp 372– (1982) [5] S. Deser, Ann. Phys. (N.Y.) 185 pp 406– (1988) [6] R. Pisarski, Phys. Rev. D 32 pp 2081– (1985) [7] S. Paul, Phys. Lett. 171B pp 244– (1986) [8] S. Paul, Phys. Lett. 174B pp 420– (1986) [9] S. Paul, Phys. Lett. B 182 pp 414– (1986) [10] H. Nielsen, Nucl. Phys. B61 pp 45– (1973) [11] , B. Julia and A. Zee, Phys. Rev. D 11 pp 2227– (1975) [12] C. Hagen, Ann. Phys. (N.Y.) 157 pp 342– (1984) [13] C. Hagen, Phys. Rev. D 31 pp 2135– (1985) [14] S. Deser, Mod. Phys. Lett. A 4 pp 2123– (1989) [15] G. Dunne, Ann. Phys. (N.Y.) 194 pp 197– (1989) [16] E. B. Bogomol’nyi, Sov. J. Nucl. Phys. 24 pp 449– (1976) [17] H. deVega, Phys. Rev. D 14 pp 1100– (1976) [18] L. Jacobs, Phys. Rev. B 19 pp 4486– (1978) [19] E. Weinberg, Phys. Rev. D 19 pp 3008– (1979) [20] J. Hong, Phys. Rev. Lett. 64 pp 2230– (1990) · Zbl 1014.58500 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.