zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On a class of preconditioners for solving the Helmholtz equation. (English) Zbl 1051.65101
Summary: In 1983, a preconditioner was proposed by {\it A. Bayliss, C. I. Goldstein}, and {\it E. Turkel} [J. Comput. Phys. 49, 443--457 (1983; Zbl 0524.65068)] based on the Laplace operator for solving the discrete Helmholtz equation efficiently with CGNR. The preconditioner is especially effective for low wavenumber cases where the linear system is slightly indefinite. {\it A. L. Laird} [Preconditioned iterative solution of the 2D Helmholtz equation, First Year’s Report, St. Hugh’s College, Oxford (2001)] proposed a preconditioner where an extra term is added to the Laplace operator. This term is similar to the zeroth order term in the Helmholtz equation but with reversed sign. Both approaches are further generalized to a new class of preconditioners, the so-called “shifted Laplace” preconditioners of the form $\Delta \varphi - \alpha k^2 \varphi$ with $\alpha \in \Bbb C$. Numerical experiments for various wavenumbers indicate the effectiveness of the preconditioner. The preconditioner is evaluated in combination with GMRES, Bi-CGSTAB, and CGNR.

MSC:
65N06Finite difference methods (BVP of PDE)
35J05Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation
65F35Matrix norms, conditioning, scaling (numerical linear algebra)
65F10Iterative methods for linear systems
Software:
CGS
WorldCat.org
Full Text: DOI
References:
[1] Bamberger, A.; Joly, P.; Roberts, J. E.: Second-order absorbing boundary conditions for the wave equation: A solution for corner problem. SIAM J. Numer. anal. 27, No. 2, 323-352 (1990) · Zbl 0716.35036
[2] Bayliss, A.; Goldstein, C. I.; Turkel, E.: An iterative method for Helmholtz equation. J. comput. Phys. 49, 443-457 (1983) · Zbl 0524.65068
[3] Berenger, J. -P: A perfectly matched layer for the absorption of electromagnetic waves. J. comput. Phys. 114, 185-200 (1994) · Zbl 0814.65129
[4] Clayton, R. W.; Engquist, B.: Absorbing boundary conditions for wave-equation migration. Geophysics 45, No. 5, 895-904 (1980)
[5] Engquist, B.; Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. comp. 31, 629-651 (1977) · Zbl 0367.65051
[6] Fletcher, R.: Conjugate gradient methods for indefinite systems. Proc. of the dundee biennal conference on numerical analysis, 1974, 73-89 (1975)
[7] R.W. Ereund, Preconditioning of symmetric, but highly indefinite linear systems, Numer. Anal. Manus. 97-3-03, Bell Labs., Murray Hill, NJ, 1997
[8] Freund, R. W.; Nachtigal, N. M.: QMR: A quasi minimum residual method for non-Hermitian linear systems. Numer. math. 60, 315-339 (1991) · Zbl 0754.65034
[9] Gander, M. J.; Nataf, F.: AILU for Helmholtz problems: A new preconditioner based on the analytic parabolic factorization. J. comput. Acoustics 9, No. 4, 1499-1509 (2001)
[10] Lahaye, D.; De Gersem, H.; Vandewalle, S.; Hameyer, K.: Algebraic multigrid for complex symmetric systems. IEEE trans. Magn. 36, No. 4, 1535-1538 (2000)
[11] Gozani, J.; Nachshon, A.; Turkel, E.: Conjugate gradient coupled with multi-grid for an indefinite problem. Advances in computer methods for partial differential equations, 425-427 (1984)
[12] Higham, N. J.: Factorizing complex symmetric matrices with positive definite real and imaginary parts. Math. comp. 67, No. 3, 1591-1599 (1998) · Zbl 0909.65016
[13] Kechroud, R.; Soulaimani, A.; Saad, Y.: Preconditioning techniques for the solution of the Helmholtz equation by the finite element method. Workshop in wave phenomena in physics and engineering: new models, algorithms and applications, May 18--21, 2003 (2003)
[14] A.L. Laird, Preconditioned iterative solution of the 2D Helmholtz equation, First Year’s Report, St. Hugh’s College, Oxford, 2001
[15] Made, M. M. M: Incomplete factorization-based preconditionings for solving the Helmholtz equation. Internat. J. Numer. methods engng. 50, 1077-1101 (2001) · Zbl 0977.65102
[16] Paige, C. C.; Saunders, M. A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. anal. 12, No. 4, 617-629 (1975) · Zbl 0319.65025
[17] Plessix, R. -E; Mulder, W. A.: Separation of variables as a preconditioner for an iterative Helmholtz solver. Appl. numer. Math. 44, 385-400 (2003) · Zbl 1013.65117
[18] Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. statist. Comput. 14, 461-469 (1993) · Zbl 0780.65022
[19] Saad, Y.: Iterative methods for sparse linear systems. (1996) · Zbl 1031.65047
[20] Saad, Y.; Schultz, M. H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. statist. Comput. 7, No. 12, 856-869 (1986) · Zbl 0599.65018
[21] Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. statist. Comput. 10, No. 1, 36-52 (1986) · Zbl 0666.65029
[22] Van Der Vorst, H. A.: Bi-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. statist. Comput. 13, No. 2, 631-644 (1992) · Zbl 0761.65023
[23] Van Der Vorst, H. A.; Melissen, J. B. M: A Petrov--Galerkin type method for solving ax=b, where A is symmetric complex. IEEE trans. Magnetics 26, No. 2, 706-708 (1990)
[24] Van Der Vorst, H. A.; Vuik, C.: GMRESR: A family of nested GMRES methods. Numer. linear algebra appl. 1, No. 4, 369-386 (1994) · Zbl 0839.65040