Steprāns, Juris The almost disjointness cardinal invariant in the quotient algebra of the rationals modulo the nowhere dense subsets. (English) Zbl 1052.03027 Real Anal. Exch. 27(2001-2002), No. 2, 795-800 (2002). Let \(B\) be a Boolean algebra that does not have the countable chain condition. Then \({\mathfrak a}(B)\) denotes the least uncountable cardinal of an uncountable maximal antichain. This generalizes the almost disjointness number of the continuum. Let \(\mathcal N\) be the ideal of nowhere dense subsets of \(\mathbb{Q}\). Then \({\mathfrak a}{{\mathcal N}}\) denotes \({\mathfrak a}({\mathcal P}(\mathbb{Q})/{\mathcal N})\). The author shows that in the iterated Laver model \({\mathfrak a} =\aleph_2\) but \({\mathfrak a}({\mathcal N}) =\aleph_1\). Further on he shows that \({\mathfrak a}({\mathcal N})\geq {\mathfrak p}\), thus \({\mathfrak a}({\mathcal N})\) can be arbitrarily large. Reviewer: Martin Weese (Potsdam) Cited in 2 Documents MSC: 03E17 Cardinal characteristics of the continuum 03E35 Consistency and independence results Keywords:almost disjointness number; nowhere dense set; Laver forcing PDFBibTeX XMLCite \textit{J. Steprāns}, Real Anal. Exch. 27, No. 2, 795--800 (2002; Zbl 1052.03027) Full Text: DOI