An inequality between class numbers and Ono’s numbers associated to imaginary quadratic fields. (English) Zbl 1052.11070

Let \(k_ D\) be an imaginary quadratic field with discriminant \(-D\). We denote by \(h_ D\) and by \(p_ D\) the class number of \(k_ D\) and Ono’s number of \(k_ D\), respectively. In the previous paper [Proc. Japan Acad., Ser. A 77, No. 2, 29–31 (2001; Zbl 0988.11052)], the authors disproved Ono’s conjecture \(h_ D \leq 2^ {p_ D}\) for all \(D\) by showing that for any \(c>1\) there exist infinitely many \(D\) such that \(h_ D \geq c ^ {p_ D}\). In this paper, they prove the modified inequality \(h_ D < {q_ D}^ {p_ D}\) for all \(D\), where \(q_ D\) is the smallest prime number that splits completely in \(k_ D\). (Note that \(q_ D=2\) if and only if \(D\equiv 7\bmod 8)\). They also discuss lower and upper bounds for \(p_ D\) and give explicit bounds.


11R11 Quadratic extensions
11R29 Class numbers, class groups, discriminants


Zbl 0988.11052
Full Text: DOI


[1] Bach, E.: Explicit bounds for primality testing and related problems. Math. Comp., 55 , 355-380 (1990). · Zbl 0701.11075
[2] Frobenius, F. G.: Über quadratische Formen die viele Primzahlen darstellen. Sitzungsber. d. Kgl. Preuss. Acad. Wiss., Berlin, pp. 966-980 (1912). · JFM 43.0278.01
[3] Möller, H.: Verallgemeinerung eines Satzes von Rabinowitsch über imaginär-quadratische Zahlkörper. J. Reine Angew. Math., 285 , 100-113 (1976). · Zbl 0326.12003
[4] Mollin, R. A.: Quadratics. CRC Press, Boca Raton (1996). · Zbl 0858.11001
[5] Narkiewicz, W.: Classical Problems in Number Theory. PWN-Polish Scientific Publishers, Warszawa (1986). · Zbl 0616.10001
[6] Ono, T.: Arithmetic of algebraic groups and its applications. St. Paul’s International Exchange Series Occasional Papers VI, St. Paul’s University, Tokyo (1986).
[7] Rabinowitsch, G.: Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. J. Reine Angew. Math., 142 , 153-164 (1913). · JFM 44.0243.03
[8] Sairaiji, F., and Shimizu, K.: A note on Ono’s numbers associated to imaginary quadratic field. Proc. Japan Acad., 77A , 29-31 (2001). · Zbl 0988.11052
[9] Sasaki, R.: On a lower bound for the class number of an imaginary quadratic field. Proc. Japan Acad., 62A , 37-39 (1986). · Zbl 0591.12008
[10] Siegel, C. L.: Über die Classenzahl quadratischer Zahlkörper. Acta Arith., 1 , 83-86 (1935). · Zbl 0011.00903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.