×

zbMATH — the first resource for mathematics

Integer polynomials with roots mod \(p\) for all primes \(p\). (English) Zbl 1052.12002
Summary: Let \(f(X)\) be an integer polynomial which is a product of two irreducible factors. Assume that \(f(X)\) has a root mod \(p\) for all primes \(p\). If the splitting field of \(f(X)\) over the rationals is a cyclic extension of the stem fields, then the Galois group of \(f(X)\) over the rationals is soluble and of bounded Fitting length. Moreover, the fixed groups of the stem extensions are in, some sense, unique.

MSC:
12F10 Separable extensions, Galois theory
20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brandl, R., Integer polynomials that are reducible modulo all primes, Amer. math. monthly, 93, 286-288, (1986) · Zbl 0603.12002
[2] Brandl, R.; Bubboloni, D.; Hupp, I., Polynomials with roots mod p for all primes p, J. group theory, 4, 233-239, (2001) · Zbl 0979.12001
[3] Burnside, W., Theory of groups of finite order, (1955), Dover New York · Zbl 0064.25105
[4] Carter, R.W., Finite groups of Lie type – conjugacy classes and complex characters, (1985), Wiley-Interscience Chicester · Zbl 0567.20023
[5] Conway, J.H., Atlas of finite groups, (1985), Clarendon Press Oxford
[6] Gorenstein, D., Finite groups, (1968), Harper & Row New York/Evanston/London · Zbl 0185.05701
[7] I. Hupp, Polynome, die modulo jeder Primzahl eine Nullstelle besitzen, Diplomarbeit, Würzburg, 1991.
[8] Huppert, B., Endliche gruppen, (1967), Springer-Verlag Berlin/New York/Heidelberg · Zbl 0217.07201
[9] Kaltofen, E.; Musser, D.R.; Saunders, B.D., A generalized class of polynomials that are hard to factor, SIAM J. comput., 12, 473-483, (1983) · Zbl 0529.68018
[10] Kondrat’ev, A.S., Prime graph components of finite simple groups, Math. USSR sb., 67, 235-247, (1990) · Zbl 0698.20009
[11] Williams, J.S., Prime graph components of finite groups, J. algebra, 69, 487-513, (1981) · Zbl 0471.20013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.