×

zbMATH — the first resource for mathematics

Multisummability of formal power series solutions of partial differential equations with constant coefficients. (English) Zbl 1052.35048
The author deals with PDE with constant coefficients and generalized results concerning \(k\)-summability to multisummability.

MSC:
35C10 Series solutions to PDEs
35C20 Asymptotic expansions of solutions to PDEs
Keywords:
Newton polygon
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Balser, W., A different characterization of multisummable power series, Analysis, 12, 57-65, (1992) · Zbl 0759.40005
[2] Balser, W., Addendum to my paper: a different characterization of multi-summable power series, Analysis, 13, 317-319, (1993) · Zbl 0778.40002
[3] W. Balser, From divergent power series to analytic functions, Lecture Notes in Mathematics, Vol. 1582, Springer, New York, 1994. · Zbl 0810.34046
[4] Balser, W., Divergent solutions of the heat equation: on an article of lutz miyake and schäfke, Pacific J. math., 188, 53-63, (1999) · Zbl 0960.35045
[5] Balser, W., Formal power series and linear systems of meromorphic ordinary differential equations, (2000), Springer New York · Zbl 0942.34004
[6] W. Balser, Summability of formal power series solutions of partial differential equations with constant coefficients, preprint, Proceedings of the International Conference on Differential and Functional Differential Equations, Moscow, 2002, submitted for publication.
[7] Balser, W.; Kostov, V., Singular perturbation of linear systems with a regular singularity, J. dyn. control systems, 8, 313-322, (2002) · Zbl 1020.34085
[8] W. Balser, V. Kostov, Formally well-posed cauchy problems for linear partial differential equations with constant coefficients, preprint, Proceedings of the Workshop on Analyzable Functions and Applications, Edinburgh, 2002, submitted for publication. · Zbl 1076.35030
[9] Balser, W.; Miyake, M., Summability of formal solutions of certain partial differential equations, Acta sci. math. (Szeged), 65, 3-4, 543-551, (1999) · Zbl 0987.35032
[10] Balser, W.; Mozo-Fernandez, J., Multisummability of formal solutions of singular perturbation problems, J. differential equations, 183, 526-545, (2002) · Zbl 1015.34080
[11] S. Bodine, R. Schäfke, On the summability of formal solutions in Liouville-Green theory, preprint, 2001.
[12] Braaksma, B.L.J., Multisummability of formal power series solutions of nonlinear meromorphic differential equations, Ann. inst. Fourier (Grenoble), 42, 3, 517-540, (1992) · Zbl 0759.34003
[13] Canalis-Durand, M.; Ramis, J.-P.; Schäfke, R.; Sibuya, Y., Gevrey solutions of singularly perturbed differential and difference equations, J. reine angew. math., 518, 95-129, (2000) · Zbl 0937.34075
[14] Dunster, T.M.; Lutz, D.A.; Schäfke, R., Convergent liouville – green expansions for second-order linear differential equations, with an application to Bessel functions, Proc. roy. soc. London ser. A, 440, 1908, 37-54, (1993) · Zbl 0798.34083
[15] J. Ecalle, Les fonctions résurgentes I-II, Publ. Math. d’Orsay, Université Paris Sud, 1981.
[16] J. Ecalle, Les fonctions résurgentes III, Publ. Math. d’Orsay, Université Paris Sud, 1985.
[17] Gérard, R.; Tahara, H., Formal power series solutions of nonlinear first order partial differential equations, Funkcial. ekvac., 41, 133-166, (1998) · Zbl 1142.35310
[18] Hibino, M., Divergence property of formal solutions for singular first order linear partial differential equations, Publ. research institute for mathematical sciences, Kyoto univ., 35, 893-919, (1999) · Zbl 0956.35024
[19] Jurkat, W.B., Summability of asymptotic power series, Asymptotic anal., 7, 239-250, (1993) · Zbl 0802.30002
[20] Lutz, D.A.; Miyake, M.; Schäfke, R., On the Borel summability of divergent solutions of the heat equation, Nagoya math. J., 154, 1-29, (1999) · Zbl 0958.35061
[21] Malgrange, B., Sommation de séries divergentes, Expos. math., 13, 163-222, (1995) · Zbl 0836.40004
[22] Miyake, M., Newton polygons and formal Gevrey indices in the cauchy – goursat – fuchs type equations, J. math. soc. Japan, 43, 305-330, (1991) · Zbl 0743.35015
[23] Miyake, M., Relations of equations of Euler, Hermite and Weber via the heat equation, Funkcial. ekvac., 36, 251-273, (1993) · Zbl 0796.34008
[24] M. Miyake, Borel summability of divergent solutions of the Cauchy problem to non-Kovaleskian equations, in: C. Hua, L. Rodino (Eds.), Partial Differential Equations and their Applications, World Scientific, Singapore, 1999, pp. 225-239. · Zbl 0990.35005
[25] Miyake, M.; Hashimoto, Y., Newton polygons and Gevrey indices for linear partial differential operators, Nagoya math. J., 128, 15-47, (1992) · Zbl 0815.35007
[26] Miyake, M.; Yoshino, M., Fredholm property for differential operators on formal Gevrey space and Toeplitz operator method, C.R. acad. bulgare sci., 47, 21-26, (1994) · Zbl 0846.47009
[27] Miyake, M.; Yoshino, M., Wiener – hopf equation and Fredholm property of the Goursat problem in Gevrey space, Nagoya math. J., 135, 165-196, (1994) · Zbl 0807.45002
[28] Miyake, M.; Yoshino, M., Toeplitz operators and an index theorem for differential operators on Gevrey spaces, Funkcial. ekvac., 38, 329-342, (1995) · Zbl 0868.47022
[29] Ōuchi, S., Formal solutions with Gevrey type estimates of nonlinear partial differential equations, J. math. sci. univ. Tokyo, 1, 1, 205-237, (1994) · Zbl 0810.35006
[30] Ōuchi, S., Genuine solutions and formal solutions with Gevrey type estimates of nonlinear partial differential equations, J. math. sci. univ. Tokyo, 2, 2, 375-417, (1995) · Zbl 0860.35018
[31] Pliś, M.E.; Ziemian, B., Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables, Ann. polon. math., 67, 31-41, (1997) · Zbl 0882.35025
[32] J.-P. Ramis, Les séries k-sommable et leurs applications, in: D. Iagolnitzer (Ed.), Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lecture Notes in Physics, Vol. 126, Springer, New York, 1980, pp. 178-199.
[33] Ramis, J.-P.; Sibuya, Y., A new proof of multisummability of formal solutions of nonlinear meromorphic differential equations, Ann. inst. Fourier (Grenoble), 44, 3, 811-848, (1994) · Zbl 0812.34005
[34] Sibuya, Y., Gevrey property of formal solutions in a parameter, (), 393-401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.