zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A Banach contraction theorem in fuzzy metric spaces. (English) Zbl 1052.54010
The author, drawing inspiration from a paper of {\it R. Vasuki} and {\it P. Veeramani} [Fuzzy Sets Syst. 135, No. 3, 415--417 (2003; Zbl 1029.54012)], establishes a fuzzy fixed point theorem of Banach type in $M$-complete fuzzy metric spaces.

MSC:
54A40Fuzzy topology
54E70Probabilistic metric spaces
54H25Fixed-point and coincidence theorems in topological spaces
WorldCat.org
Full Text: DOI
References:
[1] George, A.; Veeramani, P.: On some results of analysis for fuzzy metric spaces. Fuzzy sets and systems 90, 365-368 (1997) · Zbl 0917.54010
[2] Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy sets and systems 27, 385-389 (1989) · Zbl 0664.54032
[3] Gregori, V.; Romaguera, S.: On completion of fuzzy metric spaces. Fuzzy sets and systems 130, No. 3, 399-404 (2002) · Zbl 1010.54002
[4] Gregori, V.; Sapena, A.: On fixed point theorems in fuzzy metric spaces. Fuzzy sets and systems 125, 245-253 (2002) · Zbl 0995.54046
[5] Hadžić, O.; Pap, E.: Fixed point theory in PM-spaces. (2001)
[6] Hadžić, O.; Pap, E.: A fixed point theorem for multivalued mappings in probabilistic metric spaces. Fuzzy sets and systems 127, No. 3, 333-344 (2002) · Zbl 1002.54025
[7] Istra\check{}tescu, I.: On some fixed point theorems in generalized Menger spaces. Boll. un. Mat. ital. 5, No. 13-A, 95-100 (1976)
[8] Kramosil, O.; Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetica (Praha) 11, 326-334 (1975) · Zbl 0319.54002
[9] D. Miheţ, A fixed point theorem in probabilistic metric spaces, The Eighth Internat. Conf. on Applied Mathematics and Computer Science, Cluj-Napoca, 2002, Automat. Comput. Appl. Math. 11 (1) (2002) 79--81.
[10] V. Radu, Some remarks on the probabilistic contractions on fuzzy Menger spaces, The Eighth Internat. Conf. on Applied Mathematics and Computer Science, Cluj-Napoca, 2002, Automat. Comput. Appl. Math. 11 (1) (2002) 125--131.
[11] I.A. Rus, A. Petrusel, G. Petrusel, Fixed Point Theory 1950--2000; Roumanian Contributions, House of the Book of Science, Cluj-Napoca, 2002. · Zbl 1086.47026
[12] Schweizer, B.; Sherwood, H.; Tardiff, R. M.: Contractions on PM-spacesexamples and counterexamples. Stochastica 12, No. 1, 5-17 (1988) · Zbl 0689.60019
[13] Schweizer, B.; Sklar, A.: Probabilistic metric spaces. (1983) · Zbl 0546.60010
[14] Schweizer, B.; Sklar, A.; Thorp, E.: The metrization of SM-spaces. Pacific J. Math. 10, 673-675 (1960) · Zbl 0096.33203
[15] Sehgal, V. M.; Bharucha-Reid, A. T.: Fixed points of contraction mappings on PM-spaces. Math. systems theory 6, 97-100 (1972) · Zbl 0244.60004
[16] Sharma, S.: Common fixed point theorems in fuzzy metric spaces. Fuzzy sets and systems 127, No. 3, 345-352 (2002) · Zbl 0990.54029
[17] Sherwood, H.: Complete probabilistic metric spaces. Z. wahr. Verw. geb. 20, 117-128 (1971) · Zbl 0212.19304
[18] Song, G.: Comments on ”A common fixed point theorem in fuzzy metric spaces”. Fuzzy sets and systems 135, No. 3, 409-413 (2003) · Zbl 1020.54009
[19] Taylor, W. W.: Fixed point theorems for nonexpansive mappings in linear topological spaces. J. math. Anal. appl. 49, 162-173 (1972) · Zbl 0207.45501
[20] Vasuki, R.: A common fixed point theorem in fuzzy metric spaces. Fuzzy sets and systems 97, 395-397 (1998) · Zbl 0926.54005
[21] Vasuki, R.; Veeramani, P.: Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy sets and systems 135, No. 3, 409-413 (2003) · Zbl 1029.54012
[22] Constantin, Gh.; Istra\check{}ţescu, I.: Elements of probabilistic analysis, academiei bucuresti. (1989)
[23] Hicks, T. L.: Fixed point theory in PM spaces. Rev. res. Novi sad 13, 63-72 (1983) · Zbl 0574.54044
[24] D. Miheţ, A Note on Hicks Type Contractions on Generalized Menger Spaces, Seminarul de Teoria Probabilita\check{}ţilor şi Aplicaţii, No. 133, West University of Timişoara, 2002.
[25] V. Radu, Some Fixed Point Theorems in PM Spaces, Lectures Notes in Mathematics, vol. 1233, Springer, Berlin, 1985, pp. 125--133.