zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The correspondence between partial metrics and semivaluations. (English) Zbl 1052.54026
The author contributes to the study of the connections between (special) distance functions, namely so-called partial metrics (equivalently, weighted quasi-metrics), and valuations on ordered structures. His investigations are mainly motivated by various important examples from Theoretical Computer Science. The article introduces the notion of a semivaluation which is shown to form a natural generalization of the notion of a valuation on a lattice to the context of semilattices. The central result of the paper establishes a bijection between partial metric semilattices and semivaluation spaces in the context of quasi-metric semilattices. The results shed new light on the nature of partial metrics and allow for a simplified representation of well-known partial metric spaces, where the semivaluation involved is simply the partial metric self-distance function. If $(X,\preceq)$ is a meet semilattice then a real-valued function $f:(X,\preceq)\rightarrow [0,\infty)$ is called a meet valuation if $\forall x,y,z\in X,$ $f(x \sqcap z)\geq f(x\sqcap y)+f(y \sqcap z)-f(y)$ and $f$ is a meet co-valuation if $\forall x,y,z\in X,$ $f(x \sqcap z)\leq f(x \sqcap y)+ f(y \sqcap z)-f(y).$

54E35Metric spaces, metrizability
54E15Uniform structures and generalizations
06B35Continuous lattices and posets, applications
Full Text: DOI
[1] Birkhoff, G.: Lattice theory. AMS colloquium publications 25 (1984) · Zbl 0063.00402
[2] Bonsangue, M. M.; Van Breugel, F.; Rutten, J. J. M.M.: Generalized metric spacescompletion, topology, and powerdomains via the yoneda embedding. Theoret. comp. Sci. 193, 1-51 (1998) · Zbl 0997.54042
[3] Bukatin, M. A.; Scott, J. S.: Towards computing distances between programs via Scott domains. Lecture notes in computer science 1234, 33-43 (1997) · Zbl 0889.68099
[4] Bukatin, M. A.; Shorina, S. Y.: Partial metrics and co-continuous valuations. Lecture notes in computer science 1378, 125-139 (1998) · Zbl 0945.06006
[5] Crawley, P.; Dilworth, R. P.: Algebraic theory of lattices. (1973) · Zbl 0494.06001
[6] A. Edalat, Domain theory and integration, LICS’94, IEEE Computer Society Press, Silver Spring, MD, 1994.
[7] A. Edalat, M.H. Escardo, P.J. Potts, Semantics of Exact Real Arithmetic, Proc. Twelfth Ann. IEEE Symp. on Logic in Computer Science, IEEE Press, New York, 1997, pp. 248--257.
[8] Fletcher, P.; Lindgren, W.: Quasi-uniform spaces. (1982) · Zbl 0501.54018
[9] Gunter, C. A.: Semantics of programming languages. (1992) · Zbl 0823.68059
[10] Heckmann, R.: Lower bag domains. Fund. inform. 24, No. 3, 259-281 (1995) · Zbl 0831.68060
[11] Heckmann, R.: Approximation of metric spaces by partial metric spaces. Appl. categorical struct. 7, 71-83 (1999) · Zbl 0993.54029
[12] C. Jones, Probabilistic non-determinism, Ph.D. Thesis, University of Edinburgh, 1989.
[13] C. Jones, G. Plotkin, A probabilistic powerdomain of evaluations, in: LICS’89, IEEE Computer Society Press, Silver Spring, MD, 1998, pp. 186--195. · Zbl 0716.06003
[14] H.P. Künzi, Nonsymmetric topology, in: Proc. Szekszárd Conf., Bolyai Soc. Math. Stud. 4 (1993) 303--338.
[15] H.P. Künzi, V. Vajner, Weighted quasi-metrics, in: Proc. 8th Summer Conf. on General Topology and Applications; Ann. New York Acad. Sci. 728 (1994) 64--77. · Zbl 0915.54023
[16] S.G. Matthews, Partial metric topology, in: Proc. 8th Summer Conf. on General Topology and Applications; Ann. New York Acad. Sci. 728 (1994) 183--197. · Zbl 0911.54025
[17] Matthews, S. G.: An extensional treatment of lazy data flow deadlock. Theoret. comput. Sci. 151, 195-205 (1995) · Zbl 0872.68110
[18] S.J. O’Neill, Partial metrics, valuations and domain theory, in: S. Andima et al. (Eds.), Proc. 11th Summer Conf. General Topology and Applications; New York. Ann. New York Acad. Sci. 806 (1997) 304--315.
[19] S.J. O’Neill, A fundamental study into the theory and application of the partial metric spaces, Ph.D. Thesis, University of Warwick, 1998.
[20] Romaguera, S.; Schellekens, M.: Quasi-metric properties of complexity spaces. Topology appl. 98, 311-322 (1999) · Zbl 0941.54028
[21] M.P. Schellekens, The Smyth completion: a common foundation for denotational semantics and complexity analysis, in: Proc. MFPS 11, Electronic Notes in Theoretical Computer Science, Vol. I, Elsevier, Amsterdam, 1995, pp. 211--232. · Zbl 0910.68135
[22] M.P. Schellekens, On upper weightable spaces, in: Proc. 11th Summer Conf. General Topology and Applications; Ann. New York Acad. Sci. 806 (1996) 348--363. · Zbl 0884.54016
[23] M.B. Smyth, Quasi-uniformities: Reconciling Domains with Metric Spaces, Lecture Notes in Computer Science, Vol. 298, Springer, Berlin, 1987, pp. 236--253.
[24] Smyth, M. B.: Totally bounded spaces and compact ordered spaces as domains of computation. Topology and category theory in computer science, 207-229 (1991)
[25] Weber, H.: Uniform lattices ia generalization of topological Riesz spaces and topological Boolean rings. Ann. mat. Pura appl. 160, 347-370 (1991) · Zbl 0790.06006
[26] Weber, H.: Uniform lattices iiorder continuity and exhaustivity. Ann. mat. Pura appl. (IV) 165, 133-158 (1993) · Zbl 0799.06014