Dynamical model of a single-species system in a polluted environment. (English) Zbl 1052.92056

Summary: The effect of toxicants on ecological systems is an important issue from mathematical and experimental points of view. We have studied a dynamical model of a single-species population-toxicant system. Two cases are studied: constant exogeneous input of toxicant and rapidly fluctuating random exogeneous input of toxicant into the environment. The dynamical behaviour of the system is analyzed by using deterministic linearized techniques, Lyapunov method and stochastic linearization on the assumption that exogeneous input of toxicants into the environment behaves like ‘coloured noise’.


92D40 Ecology
37N25 Dynamical systems in biology
92D25 Population dynamics (general)
34D23 Global stability of solutions to ordinary differential equations
60G35 Signal detection and filtering (aspects of stochastic processes)
Full Text: DOI


[1] Bhattacharya, R.; Bandyopadhyay, M.; Banerjee, S., Stability and bifurcation in a diffusive prey-predator system: non-linear bifurcation analysis, J. Appl. Math. & Computing, 10, 1-2, 17-26 (2002) · Zbl 1139.34309 · doi:10.1007/BF02936202
[2] Birkhoff, G.; Rota, G. C., Ordinary Differential Equations (1982), Boston: Ginn, Boston · Zbl 0183.35601
[3] Black, G. F.; Adamas, V. D.; Lamarra, V. A., Prognosis for water conservation and the development of energy resources at the Salton sea: Destruction of preservation of this ecosystem?, Aquatic resources Management of the Colorado River Ecosystem, 363-382 (1983), Ann Arbor, M.I.: Ann Arbor Science, Ann Arbor, M.I.
[4] De Luna, J. T.; Hallam, T. G., Effect of toxicants on population: a qualitative approach IV. Resource-consumer-toxicant models, Ecol. Model., 35, 249-273 (1987) · doi:10.1016/0304-3800(87)90115-3
[5] Freedman, H. I., Deterministic Mathematical Models in Population Ecology (1987), Edmonton: HIFR consulting Ltd., Edmonton · Zbl 0448.92023
[6] Freedman, H. I.; Shukla, J. B., Models for the effect of toxicant in single species and predator-prey systems, J. Math. Biol., 30, 15-30 (1991) · Zbl 0825.92125 · doi:10.1007/BF00168004
[7] Gonzalez, M. R.; Hart Chery, I. M.; Verfaillie, J. R.; Hurlbert, S. H., Salinity and fish effects on Salton sea microecosystems: water chemistry and nutrient cycling, Hydrobiologia, 38, 105-128 (1998) · doi:10.1023/A:1003227624686
[8] Grummer, G.; Milthorpe, F. L., The role of toxic substances in the interrelationships between higher plants, Proc. Conf. on mechanisms in Biological Competition, 219-228 (1961), New York: Academic press, New York
[9] Haas, C. N., Application of predator-prey models to disinfection, J. Water Pollut. Control. Fed., 53, 378-386 (1981)
[10] Hallam, T. G.; Clark, C. E., Non-autonomous logistic equations as models of populations in a deteriorating environment, J. Theor. Biol., 93, 303-311 (1982) · doi:10.1016/0022-5193(81)90106-5
[11] Hallam, T. G.; Clark, C. E.; Jordan, G. S., Effects of toxicants on populations: a qualitative approach II. First order kinetics, J. Math. Biol., 18, 25-37 (1983) · Zbl 0548.92019
[12] Hallam, T. G.; Clark, C. E.; Lassiter, R. R., Effects of toxicants on populations: a qualitative approach I. Equilibrium environmental exposure, Ecol. Model., 18, 291-304 (1983) · Zbl 0548.92018 · doi:10.1016/0304-3800(83)90019-4
[13] Hallam, T. G.; De Luna, J. T., Effects of toxicants on populations: a qualitative approach III. Environmental and food chain pathways, J. Theor. Biol., 109, 411-429 (1984) · doi:10.1016/S0022-5193(84)80090-9
[14] Jensen, A. L.; Marshall, J. S., Application of a surplus production model to assess environmental impacts on exploited populations of Daphnia pluex in the laboratory, Environ. Pollut. (Ser. A), 28, 273-280 (1982) · doi:10.1016/0143-1471(82)90143-X
[15] Jumarie, G., A Practical Variotional Approach to Stochastic Optimal Control via State Moment Equations, Journal of Franklin Institute: Engineering and Applied Mathematics, 332, 761-772 (1995) · Zbl 0855.93097 · doi:10.1016/0016-0032(95)00074-7
[16] Jumarie, G., Stochastics of order n in biological systems. Applications to population dynamics, thermodynamics, nonequilibrium phase and continuity, J. Biol. Sys., 11, 113-137 (2003) · Zbl 1041.92001 · doi:10.1142/S021833900300083X
[17] Kesh, D.; Mukherjee, D.; Sarkar, A. K.; Roy, A. B., Ratio dependent predation: A bifurcation analysis, J. Appl. Math and Computing (old:KJCAM), 5, 2, 295-306 (1998) · Zbl 0913.92028
[18] May, R. M., Stability in Randomly Fluctuating versus Deterministic Environments, Am. Nat., 107, 621-650 (1973) · doi:10.1086/282863
[19] Nelson, S. A., The problem of oil pollution of the sea, Advances in Marine Biology (1970), London: Academic press, London
[20] Prajneshu, A stochastic model for two interacting species, Stochastic Processes Appl., 4, 271-282 (1976) · Zbl 0337.92014 · doi:10.1016/0304-4149(76)90015-6
[21] Shukla, J. B.; Freedman, H. I.; Pal, V. N.; Misra, O. P.; Agarwal, M.; Shukla, A., Degradation and subsequent regeneration of a forestry resource: a mathematical model, Ecol. Model., 44, 219-229 (1989) · doi:10.1016/0304-3800(89)90031-8
[22] Wang, W.; Ma, Z., Permanence of populations in a polluted environment, Math. Biosci., 122, 235-248 (1994) · Zbl 0817.92018 · doi:10.1016/0025-5564(94)90060-4
[23] White, B. S., The effects of a rapidly fluctuating random environment on systems of interacting species, SIAM J. Appl. Math., 32, 666-693 (1977) · Zbl 0367.60066 · doi:10.1137/0132055
[24] Woodman, J. N.; Cowling, E. B., Airborne chemicals and forest health, Environ. Sci. Technol., 21, 120-126 (1987) · doi:10.1021/es00156a001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.