Imanuvilov, O. Yu. On exact controllability for the Navier-Stokes equations. (English) Zbl 1052.93502 ESAIM, Control Optim. Calc. Var. 3, 97-131 (1998). Summary: We study the local exact controllability problem for the Navier-Stokes equations that describe an incompressible fluid flow in a bounded domain with control distributed in an arbitrary fixed subdomain. The result that we obtain in this paper is as follows. Suppose that we have a given stationary point of the Navier-Stokes equations and our initial condition is sufficiently close to it. Then there exists a locally distributed control such that in a given moment of time the solution of the Navier-Stokes equations coincides with this stationary point. Cited in 22 Documents MSC: 93B05 Controllability 93C20 Control/observation systems governed by partial differential equations 35Q30 Navier-Stokes equations 76D05 Navier-Stokes equations for incompressible viscous fluids Keywords:locally distributed control PDF BibTeX XML Cite \textit{O. Yu. Imanuvilov}, ESAIM, Control Optim. Calc. Var. 3, 97--131 (1998; Zbl 1052.93502) Full Text: DOI EuDML OpenURL References: [1] V.M. Alekseev, V.M. Tikhomirov, S.V. Fomin: Optimaal Control, Consultants Bureau, New York, 1987. Zbl0689.49001 MR924574 · Zbl 0689.49001 [2] D. Chae, O.Yu. Imanuvilov, S.M. Kim: Exact controllability for semilinear parabolic equations with Neumann boundary conditions, J. of Dynamical and Control Syst. 2, 1996, n^\circ 4, 449-483. Zbl0946.93007 MR1420354 · Zbl 0946.93007 [3] J.-M. Coron: On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier-slip boundary conditions, ESAIM: Control, Optimisation and Calculus of Variations, 1, 1996, 35-75. Zbl0872.93040 MR1393067 · Zbl 0872.93040 [4] J.-M. Coron: On the controllability of 2-D incompressible perfect fluids. J. Math. Pures et Appl., 75, 1996, 155-188. Zbl0848.76013 MR1380673 · Zbl 0848.76013 [5] J.-M. Coron: Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels, C. R. Acad. Sci. Paris, 317, Série I, 1993, 271-276. Zbl0781.76013 MR1233425 · Zbl 0781.76013 [6] J.-M. Coron, A.V. Fursikov: Global exact controllability of the 2-D Navier-Stokes equations on manifold without boundary, Russian Journal of Math. Physics 4, 1996, n^\circ 3, 1-20. Zbl0938.93030 MR1470445 · Zbl 0938.93030 [7] C. Fabre: Résultats d’unicité pour les équations de Stokes et applications au contrôle, C. R. Acad. Sci. Paris, 322, Série I, 19961191-1196. Zbl0861.35073 · Zbl 0861.35073 [8] C. Fabre, G. Lebeau: Prolongement unique des solutions de l’équation de Stokes, Com. P.D.E., 21, 1996, n^\circ 3 - 4, 573-596. Zbl0849.35098 MR1387461 · Zbl 0849.35098 [9] A.V. Fursikov: Lagrange principle for problems of optimal control of ill-posed or singular distributed systems, J. Maths Pures Appl., 71, 1992, n^\circ 2, 139-195. Zbl0829.49001 MR1170249 · Zbl 0829.49001 [10] A.V. Fursikov: Exact boundary zero controllability of three dimensional Navier-Stokes equations, J. of Dynamical and Control Syst., 1, 1995, n^\circ 3, 325-350. Zbl0951.93005 MR1354539 · Zbl 0951.93005 [11] A.V. Fursikov: The Cauchy problem for a second-order elliptic equation in a conditionally well-posed formulation, Trans. Moscow Math. Soc., 1990, 139-176. Zbl0716.35023 MR1056468 · Zbl 0716.35023 [12] A.V. Fursikov, O.Yu. Imanuvilov: On controllability of certain systems simulating a fluid flow, in Flow Control, IMA vol. Math. Appl., Ed. by M.D. Gunzburger, Springer-Verberg, New York, 68, 1995, 148-184. Zbl0922.93006 MR1348646 · Zbl 0922.93006 [13] A.V. Fursikov, O.Yu. Imanuvilov: On exact boundary zero-controllability of two-dimensional Navier-Stokes equations, Acta Applicandæ Mathematicæ, 37, 1994, 67-76. Zbl0809.93006 MR1308746 · Zbl 0809.93006 [14] A.V. Fursikov, O.Yu. Imanuvilov: Local exact controllability of two dimensional Navier-Stokes system with control on the part of the boundary, Sbornik Mathematics, 187, 1996, n^\circ 9, 1355-1390. Zbl0869.35074 MR1422385 · Zbl 0869.35074 [15] A.V. Fursikov, O.Yu. Imanuvilov: Local exact boundary controllability of the Boussinesq equation, SIAM J. Cont. Opt., 36, Issue 2, 1998. Zbl0907.76020 MR1616510 · Zbl 0907.76020 [16] A.V. Fursikov, O.Yu. Imanuvilov: Local exact controllability of the Navier-Stokes Equations, C. R. Acad. Sci. Paris, 323, Série I, 1996, 275-280. Zbl0873.76020 MR1404773 · Zbl 0873.76020 [17] A.V. Fursikov, O. Yu. Imanuvilov, Controllability of evolution equations, Lecture notes series 34 SNU, Seoul 1996. Zbl0862.49004 MR1406566 · Zbl 0862.49004 [18] A.V. Fursikov, O.Yu. Imanuvilov: On approximate controllability of the Stokes system, Annales de la Faculté des Sciences de Toulouse, 11, 1993, 205-232. Zbl0925.93416 MR1253389 · Zbl 0925.93416 [19] L. Hörmander: Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963. Zbl0108.09301 MR404822 · Zbl 0108.09301 [20] O.Yu. Imanuvilov: Boundary controllability of parabolic equations, Sbornik Mathematics, 186, 1995, n^\circ 6, 879-900. Zbl0845.35040 MR1349016 · Zbl 0845.35040 [21] O.Yu. Imanuvilov: Local exact controllability for the 2-D Navier-Stokes equations with the Navier slip boundary conditions, Lecture Notes in Physics, 491, 1997, 148-168. Zbl0897.35063 MR1601027 · Zbl 0897.35063 [22] A.N. Kolmogorov, S.V. Fomin: Introductory Real Analysis, Dover Publications, INC, New York, 1996. Zbl0213.07305 MR377445 · Zbl 0213.07305 [23] O.A. Ladyzenskaja, N.N. Ural’ceva: Linear and Quasilinear Equations of Elliptic Type, Academic Press, New York, 1968. MR244627 · Zbl 0164.13002 [24] J.-L. Lions: Contrôle des Systèmes Distribués Singuliers, Gauthier-Villars, Paris, 1983. Zbl0514.93001 MR712486 · Zbl 0514.93001 [25] J.-L. Lions: Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag 1971. Zbl0203.09001 MR271512 · Zbl 0203.09001 [26] J.-L. Lions: Are there connections bet ween turbulence and controllability?9e Conférence internationale de l’INRIA, Antibes. 12-15 juin 1990. [27] R. Temam: Navier-Stokes Equations, North-Holland Publishing Company, Amsterdam, 1979. Zbl0426.35003 MR603444 · Zbl 0426.35003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.