zbMATH — the first resource for mathematics

The theory of Coleman power series for \(K_2\). (English) Zbl 1053.11088
Let \(H\) be a complete discrete valuation field of mixed characteristic \((0,p)\) with imperfect residue field \(k\) such that \([k: k^p]=p\), \(p\) being a prime number. The author establishes the \(K_2\)-analogue of such a local field \(H\) of the Coleman isomorphism associating a power series to a norm compatible system of units in the tower of usual \(p\)-adic local fields. Namely, she associates an element of the \(K_2\)-group of a certain power series ring to a norm compatible system of elements of the \(K_2\)-groups in a certain field-tower over \(H\). As an important generalization of the theories of Iwasawa (cyclotomic case) and Coates-Wiles (elliptic case), she studies the \(K_2\)-power series associated to a norm compatible system constructed by K. Kato using the Beilinson elements when \(H\) is the \(p\)-adic completion of the function field of a modular curve. The author also gives the relation between her \(K_2\)-Coleman isomorphism and Parschin-Kato’s two-dimensional local class field theory.

11S31 Class field theory; \(p\)-adic formal groups
11G55 Polylogarithms and relations with \(K\)-theory
11F11 Holomorphic modular forms of integral weight
19C99 Steinberg groups and \(K_2\)
Full Text: DOI
[1] Berthelot, P., Cohomologie cristalline des schémas de caractéristique 0\(">, Lecture Notes in Math. 407, Springer (1974).\) · Zbl 0298.14012
[2] Coleman, R., Division values in local fields, Invent. Math. 53 (1979) 91-116. · Zbl 0429.12010
[3] Coates, J. and Wiles, A., On \(p\)-adic \(L\)-functions and Elliptic Units, J. Austral. Math. Soc (Series A) 26 (1978) 1-25. · Zbl 0442.12007
[4] Faltings, G., Crystalline cohomology and \(p\)-adic Galois-representations, Algebraic analysis, geometry, and number theory, Johns Hopkins Univ. Press (1988) 25-88. · Zbl 0805.14008
[5] Faltings, G., Almost étale extensions, preprint MPI Bonn (1998).
[6] Fesenko, I., Explicit constructions in local fields, Thesis, St. Petersburg Univ. (1987).
[7] Fesenko, I., Class field theory of multidimensional local fields of characteristic \(0\), with the residue field of positive characteristic, Algebra i Analiz (1991); English translation in St. Petersburg Math. J. 3 (1992) 649-678. · Zbl 0791.11064
[8] Fontaine, J. -M., Sur certains types de répresentations \(p\)-adiques du groupe de Galois d’un corps local: construction d’un anneau de Barsotti-Tate, Ann. of Math. 115 (1982) 529-577. · Zbl 0544.14016
[9] Fontaine, J.-M., Représentations \(p\)-adiques des corps locaux, Grothendieck festschrift, vol. 2, Birkhäuser (1990) 249-309. · Zbl 0743.11066
[10] Fontaine, J. -M., Sur un théorème de Bloch et Kato \((\)lettre à B. Perrin-Riou\()\) appendice to PERRIN-RIOU, B.Théorie d’Iwasawa des représentations \(p\)-adiques, Invent. Math. 115 (1994) 151-161. · Zbl 0802.14010
[11] Fontaine, J. -M., and Messing, W.,\(p\)-adic periods and \(p\)-adic étale cohomology, Contemporary Math. 67 (1987) 179-207. · Zbl 0632.14016
[12] Fukaya, T., Explicit reciprocity laws for \(p\)-divisible groups over higher dimensional local fields, Journal für die reine und ang. Math. 531 61-119 (2001). · Zbl 1012.11103
[13] Fukaya, T., Coleman power series for \(K_2\) and \(p\)-adic zeta functions of modular forms, in preparation. · Zbl 1142.11338
[14] Fontaine, J. -M. and Wintenberger, J.- P. , Le “corps des normes” de certaines extensions algébriques de corps locaux, C.R. Acad. Sci. 288 (1979) 367-370. · Zbl 0475.12020
[15] Hida, H., Elementary theory of \(L\)-functions and Eisenstein series, London Math. Soc. Student Texts 26, Cambridge Univ. Press (1993). · Zbl 0942.11024
[16] Hyodo, O., On the Hodge-Tate decomposition in the imperfect residue field case, Journal für die reine und ang. Math. 365 (1986) 97-113. · Zbl 0571.14004
[17] Iwasawa, K., On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan 16 (1964) 42-82. · Zbl 0125.29207
[18] Kato, K., A generalization of local class field theory by using \(K\)-groups, \({\rom {I}}\), J. Fac. Sci. Univ. of Tokyo, Sec. IA, 26 (1979) 303-376; \({\rom {II}}\), J. Fac. Sci. Univ. of Tokyo, Sec. IA, 27 (1980) 603-683; \({\rom {III}}\), J. Fac. Sci. Univ. of Tokyo, Sec. IA, 29 (1982) 31-43. · Zbl 0428.12013
[19] Kato, K., Residue Homomorphisms in Milnor \(K\)-theory, Advanced Studies in Pure Math. 2 (1983) 153-172.
[20] Kato, K., Explicit reciprocity law and the cohomology of Fontaine-Messing, Bull. Soc. Math. Fr. 119 (1991) 397-441. · Zbl 0752.14015
[21] Kato, K., Lectures on the approach to Iwasawa theory for Hasse-Weil \(L\)-functions via \(B_{\rom {dR}}\), Lecture Notes in Math. 1553, Springer (1993) 50-163. · Zbl 0815.11051
[22] Kato, K., Generalized explicit reciprocity laws, Advanced Studies in Contemporary Mathematics 1 (1999) 57-126. · Zbl 1024.11029
[23] Kato, K.,\(p\)-adic Hodge theory and values of zeta functions of modular forms, preprint, Univ. Tokyo (2000).
[24] Kurihara, M., On two types of complete discrete valuation fields, Compositio Math. 63 (1987) 237-257. · Zbl 0674.12007
[25] Kurihara, M., The exponential homomorphism for the Milnor \(K\)-groups and explicit reciprocity law, Journal für die reine und ang. Math. 498 (1998) 201-221. · Zbl 0909.19001
[26] Laubie, F., Extensions de Lie et groupes d’automorphismes de corps locaux, Compos. Math. 67 (1988) 165-189. · Zbl 0649.12012
[27] Milnor, J., Algebraic \(K\)-theory and quadratic forms, Invent. Math. 9 (1970) 318-344. · Zbl 0199.55501
[28] Nakamura, J., On the Milnor \(K\)-groups of complete discrete valuation fields, the doctoral thesis, Univ. of Tokyo (2000). · Zbl 0948.19001
[29] Quillen, D., Higher algebraic \(K\)-theory I, Lecture Notes in Math. 341, Springer (1973) 85-147. · Zbl 0292.18004
[30] Scholl, J., An introduction to Kato’s Euler systems, London Math. Soc. Lecture Note Ser. 254, Cambridge Univ. Press (1998) 379-460. · Zbl 0952.11015
[31] Shimura, G., The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math. 29 (1976) 783-804. · Zbl 0348.10015
[32] Tate, J., Relations between \(K_2\) and Galois cohomology, Invent. Math. 36 (1976) 257-274. · Zbl 0359.12011
[33] Tsuji, T.,\(p\)-adic etale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999) 233-411. · Zbl 0945.14008
[34] Vostkov, V., An explicit form of the reciprocity law, English transl. in Math. USSR Izv. 13 (1979) 557-588. · Zbl 0467.12018
[35] Vostkov, V., Explicit construction of the theory of class fields of a multidimensional local field, English transl. in Math. USSR Izv. 26 (1986) 263-287.
[36] Wiles, A., Higher explicit reciprocity laws, Annals of Math. 107 (1978) 235-254. · Zbl 0378.12006
[37] Wintenberger, J.- P., Le corps des normes de certaines extensions infinies de corps locaux, Ann. Sc. ENS. 16 (1983) 59-89. · Zbl 0516.12015
[38] Witt, E., Zyklische Körper und Algebren der Charakteristik \(p\) vom Grad \(p^n\), Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteritik \(p\), Journal für die reine und ang. Math. 176 126-140 (1937). · JFM 62.1112.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.