×

Elliptic genera of singular varieties. (English) Zbl 1053.14050

Let \(X\) be a Kähler manifold and let \(X^{n}/ \Sigma_{n}\) denote the \(n\)-fold symmetric product of \(X\), the quotient of \(X^{n}\) by the action of the symmetric group. In R. Dijkgraaf, G. Moore, E. Verlinde and H. Verlinde [Commun. Math. Phys. 185, No.1, 197-209 (1997; Zbl 0872.32006)] a formula is given, in terms of the elliptic genus of \(X\), for the generating function made from the orbifold elliptic genera of the symmetric products. When \(X\) is an almost complex manifold the generating function is a holomorphic function on the product of the complex numbers and the upper half plane. When \(X\) is Calabi-Yau this function is a weak Jacobi form. This paper sets about justifying the physicists’ conjectural formula mathematically. The authors introduce two notions of elliptic genus for singular varieties. These are (a) the singular elliptic genus, defined for a pair consisting of a variety and a \({\mathbb Q}\)-Cartier divisor on it and (b) the orbifold elliptic genus, defined for a manifold with an action by a finite group \(G\). The authors conjecture that these two elliptic genera coincide for \(X/G\) and the ramification divisor. Using the factorisation of birational maps into a sequence of smooth blow-ups and blow-downs, proved in D. Abramovich, K. Karu, K. Matsuki and J. Wlodarczyk [J. Am. Math. Soc. 15, No. 3, 531–572 (2002; Zbl 1032.14003)] the authors establish their conjecture in a number of cases (and in a footnote apparently promise a complete proof [http://arXiv.org/abs/math.AG/0206241]) as well as deriving a number of general properties such as cobordism invariance.

MSC:

14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14J17 Singularities of surfaces or higher-dimensional varieties
32S45 Modifications; resolution of singularities (complex-analytic aspects)
55N34 Elliptic cohomology
11F23 Relations with algebraic geometry and topology
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] D. Abramovich, K. Karu, K. Matsuki, and J. Włodarsczyk, Torification and factorization of birational maps , J. Amer. Math. Soc. 15 (2002), 531–572. \CMP1 896 232 JSTOR: · Zbl 1032.14003
[2] M. F. Atiyah and I. M. Singer, The index of elliptic operators, III , Ann. of Math. (2) 87 (1968), 546–604. JSTOR: · Zbl 0164.24301
[3] V. V. Batyrev, “Stringy Hodge numbers of varieties with Gorenstein canonical singularities” in Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997) , World Sci., River Edge, N.J., 1998, 1–32. · Zbl 0963.14015
[4] –. –. –. –., “Birational Calabi-Yau \(n\)-folds have equal Betti numbers” in New Trends in Algebraic Geometry (Warwick, England, 1996) , London Math. Soc. Lecture Note Ser. 264 , Cambridge Univ. Press, Cambridge, 1999, 1–11.
[5] –. –. –. –., Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs , J. Eur. Math. Soc. (JEMS) 1 (1999), 5–33. · Zbl 0943.14004
[6] ——–, Canonical abelianization of finite group actions ,
[7] V. V. Batyrev and D. I. Dais, Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry , Topology 35 (1996), 901–929. · Zbl 0864.14022
[8] E. Bierstone and P. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant , Invent. Math. 128 (1997), 207–302. · Zbl 0896.14006
[9] A. Borel et al., Intersection Cohomology (Bern, 1983) , Progr. Math. 50 , Swiss Seminars, Birkhäuser, Boston, 1984. · Zbl 0553.14002
[10] L. A. Borisov, Vertex algebras and mirror symmetry , Comm. Math. Phys. 215 (2001), 517–557. · Zbl 0990.17023
[11] L. A. Borisov and P. E. Gunnells, Toric varieties and modular forms , · Zbl 1039.11022
[12] L. A. Borisov and A. Libgober, Elliptic genera of toric varieties and applications to mirror symmetry , Invent. Math. 140 (2000), 453–485. · Zbl 0958.14033
[13] ——–, McKay correspondence for elliptic genera , · Zbl 1153.58301
[14] K. Chandrasekharan, Elliptic Functions , Grundlehren Math. Wiss. 281 , Springer, Berlin, 1985. · Zbl 0575.33001
[15] H. Clemens, J. Kollár, and S. Mori, Higher-Dimensional Complex Geometry , Astérisque 166 , Soc. Math. France, Montrouge, 1988.
[16] V. I. Danilov, The geometry of toric varieties (in Russian), Uspekhi Mat. Nauk 33 , no. 2 (1978), 85–134.; English translation in Russian Math. Surveys 33 , no. 2 (1978), 97–154. · Zbl 0425.14013
[17] J. Denef and F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration , Invent. Math. 135 (1999), 201–232. · Zbl 0928.14004
[18] ——–, Motivic integration, quotient singularities and the McKay correspondence , · Zbl 1080.14001
[19] R. Dijkgraaf, G. Moore, E. Verlinde, and H. Verlinde, Elliptic genera of symmetric products and second quantized strings , Comm. Math. Phys. 185 (1997), 197–209. · Zbl 0872.32006
[20] M. Eichler and D. Zagier, The Theory of Jacobi Forms , Progr. Math. 55 , Birkhäuser, Boston, 1985. · Zbl 0554.10018
[21] G. Ellingsrud, L. Göttsche, and M. Lehn, On the cobordism class of the Hilbert scheme of a surface , J. Algebraic Geom. 10 (2001), 81–100. · Zbl 0976.14002
[22] J. Fogarty, Algebraic families on an algebraic surface , Amer. J. Math. 90 (1968), 511–521. JSTOR: · Zbl 0176.18401
[23] W. Fulton, Intersection Theory , 2d ed., Ergeb. Math. Grenzgeb. (3) 2 , Springer, Berlin, 1998. · Zbl 0541.14005
[24] L. Göttsche and W. Soergel, Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces , Math. Ann. 296 (1993), 235–245. · Zbl 0789.14002
[25] V. Gritsenko, Elliptic genus of Calabi-Yau manifolds and Jacobi and Siegel modular forms (in Russian), Algebra i Analiz 11 , no. 5 (1999), 100–125.; English translation in St. Petersburg Math. J. 11 , no. 5 (2000), 781–804.
[26] A. Grothendieck, Sur quelques points d’algèbre homologique , Tôhoku Math. J. (2) 9 (1957), 119–221. · Zbl 0118.26104
[27] F. Hirzebruch, Topological Methods in Algebraic Geometry , Classics Math., Springer, Berlin, 1995. · Zbl 0843.14009
[28] F. Hirzebruch and T. Höfer, On the Euler number of an orbifold , Math. Ann. 286 (1990), 255–260. · Zbl 0679.14006
[29] A. Kerber, Representations of the Permutation Groups, I , Lecture Notes in Math. 240 , Springer, Berlin, 1971. · Zbl 0232.20014
[30] C. Kosniowski, Generators of the \(Z/p\) bordism ring: Serendipity , Math. Z. 149 (1976), 121–130. · Zbl 0315.57022
[31] I. G. Macdonald, The Poincaré polynomial of a symmetric product , Proc. Cambridge Philos. Soc. 58 (1962), 563–568. · Zbl 0121.39601
[32] F. Malikov, V. Schechtman, and A. Vaintrob, Chiral de Rham complex , Comm. Math. Phys. 204 (1999), 439–473. · Zbl 0952.14013
[33] J. McKay, “Graphs, singularities, and finite groups” in The Santa Cruz Conference on Finite Groups (Santa Cruz, Calif., 1979) , Proc. Sympos. Pure Math. 37 , Amer. Math. Soc., Providence, 1980, 183–186. · Zbl 0451.05026
[34] P. H. Siegel, Witt spaces: a geometric cycle theory for \(KO\)-homology at odd primes , Amer. J. Math. 105 (1983), 1067–1105. JSTOR: · Zbl 0547.57019
[35] B. Totaro, Chern numbers of singular varieties and elliptic homology , Ann. of Math. (2) 151 (2000), 757–791. JSTOR: · Zbl 1050.14500
[36] C. T. C. Wall, Cobordism of pairs , Comm. Math. Helv. 35 (1961), 135–145. · Zbl 0096.37706
[37] W. Wang and J. Zhou, Orbifold Hodge numbers of the wreath product orbifolds , J. Geom. Phys. 38 (2001), 152–169. · Zbl 1063.32007
[38] E. Zaslow, Topological orbifold models and quantum cohomology rings , Comm. Math. Phys. 156 (1993), 301–331. · Zbl 0795.53074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.