×

The Wright functions as solutions of the time-fractional diffusion equation. (English) Zbl 1053.35008

The authors consider the Cauchy problem for the time-fractional diffusion equation obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order \(\beta\in (0,2)\). They use the Fourier-Laplace transforms to show that the fundamental solutions (Green functions) are higher transcendental functions of the Wright-type and can be interpreted as spatial probability density functions evolving in time with similarity properties. They also provide a general presentation of these functions in terms of Mellin-Barnes integrals useful for numerical computation.

MSC:

35A22 Transform methods (e.g., integral transforms) applied to PDEs
26A33 Fractional derivatives and integrals
35S10 Initial value problems for PDEs with pseudodifferential operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Anh, V.V.; Leonenko, N.N., Spectral analysis of fractional kinetic equations with random data, Journal of statistical physics, 104, 5/6, 1349-1387, (2001) · Zbl 1034.82044
[2] Braaksma, B.L.J., Asymptotic expansions and analytical continuations for a class of Barnes-integrals, Compositio Mathematica, 15, 3, 239-341, (1962) · Zbl 0129.28604
[3] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G., Higher transcendental functions, Bateman project, vols. 1-3, (1953-1955), McGraw-Hill New York · Zbl 0051.30303
[4] Gorenflo, R.; Iskenderov, A.; Luchko, Yu., Mapping between solutions of fractional diffusion-wave equations, Fractional calculus and applied analysis, 3, 1, 75-86, (2000) · Zbl 1033.35161
[5] Gorenflo, R.; Luchko, Yu.; Mainardi, F., Analytical properties and applications of the wright function, Fractional calculus and applied analysis, 2, 4, 383-414, (1999) · Zbl 1027.33006
[6] Gorenflo, R.; Luchko, Yu.; Mainardi, F., Wright functions as scale-invariant solutions of the diffusion-wave equation, Journal of computational and applied mathematics, 118, 175-191, (2000) · Zbl 0973.35012
[7] R. Gorenflo, Yu. Luchko, S. Rogozin, Mittag-Leffler type functions: notes on growth properties and distribution of zeros, Pre-print A-04/97, Fachbereich Mathematik und Informatik, Freie Universität, Berlin, 1997. Available from <http://www.math.fu-berlin.de/publ/index.html>
[8] Gorenflo, R.; Mainardi, F., Fractional calculus: integral and differential equations of fractional order, (), 223-276, Reprinted in NEWS 010101
[9] Gorenflo, R.; Mainardi, F.; Srivastava, H.M., Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena, (), 195-202 · Zbl 0921.33009
[10] Kiryakova, V., Generalized fractional calculus and applications, Pitman research notes in mathematics, vol. 301, (1994), Longman Harlow · Zbl 0882.26003
[11] Mainardi, F., The fundamental solutions for the fractional diffusion-wave equation, Applied mathematics letters, 9, 6, 23-28, (1996) · Zbl 0879.35036
[12] Mainardi, F., Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, solitons and fractals, 7, 1461-1477, (1996) · Zbl 1080.26505
[13] Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, (), 291-348, Reprinted in NEWS 011201 · Zbl 0917.73004
[14] Mainardi, F.; Gorenflo, R., On mittag – leffler-type functions in fractional evolution processes, Journal of computational and applied mathematics, 118, 283-299, (2000) · Zbl 0970.45005
[15] Mainardi, F.; Luchko, Yu.; Pagnini, G., The fundamental solution of the space – time fractional diffusion equation, Fractional calculus and applied analysis, 4, 2, 153-192, (2001), Reprinted with permission in NEWS 010401 · Zbl 1054.35156
[16] F. Mainardi, G. Pagnini, Salvatore Pincherle: the pioneer of the Mellin-Barnes integrals, J. Comput. Appl. Math., in press. 6th International Symposium on Orthogonal Polynomials, Special Functions and Applications, Roma-Ostia, Italy, June 18-22, 2001 · Zbl 1050.33018
[17] Marichev, O.I., Handbook of integral transforms of higher transcendental functions, theory and algorithmic tables, (1983), Chichester Ellis Horwood · Zbl 0494.33001
[18] Mathai, A.M.; Saxena, R.K., The H-function with applications in statistics and other disciplines, (1978), Wiley Eastern Ltd New Delhi · Zbl 0382.33001
[19] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics reports, 339, 1-77, (2000) · Zbl 0984.82032
[20] Podlubny, I., Fractional differential equations, (1999), Academic Press New York · Zbl 0918.34010
[21] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach Science Publishers New York and London, (Translation from the Russian edition, Nauka i Tekhnika, Minsk, 1987) · Zbl 0818.26003
[22] Srivastava, H.M.; Gupta, K.C.; Goyal, S.P., The H-functions of one and two variables with applications, (1982), South Asian Publishers New Delhi and Madras · Zbl 0506.33007
[23] Srivastava, H.M.; Kashyap, B.R.K., Special functions in queuing theory and related stochastic processes, (1982), Academic Press New York · Zbl 0492.60089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.