zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The Wright functions as solutions of the time-fractional diffusion equation. (English) Zbl 1053.35008
The authors consider the Cauchy problem for the time-fractional diffusion equation obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order $\beta\in (0,2)$. They use the Fourier-Laplace transforms to show that the fundamental solutions (Green functions) are higher transcendental functions of the Wright-type and can be interpreted as spatial probability density functions evolving in time with similarity properties. They also provide a general presentation of these functions in terms of Mellin-Barnes integrals useful for numerical computation.

MSC:
35A22Transform methods (PDE)
26A33Fractional derivatives and integrals (real functions)
35S10Initial value problems for pseudodifferential operators
WorldCat.org
Full Text: DOI
References:
[1] Anh, V. V.; Leonenko, N. N.: Spectral analysis of fractional kinetic equations with random data. Journal of statistical physics 104, No. 5/6, 1349-1387 (2001) · Zbl 1034.82044
[2] Braaksma, B. L. J.: Asymptotic expansions and analytical continuations for a class of Barnes-integrals. Compositio Mathematica 15, No. 3, 239-341 (1962) · Zbl 0129.28604
[3] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G.: Higher transcendental functions. Bateman project 1--3 (1953--1955) · Zbl 0051.30303
[4] Gorenflo, R.; Iskenderov, A.; Luchko, Yu.: Mapping between solutions of fractional diffusion-wave equations. Fractional calculus and applied analysis 3, No. 1, 75-86 (2000) · Zbl 1033.35161
[5] Gorenflo, R.; Luchko, Yu.; Mainardi, F.: Analytical properties and applications of the wright function. Fractional calculus and applied analysis 2, No. 4, 383-414 (1999) · Zbl 1027.33006
[6] Gorenflo, R.; Luchko, Yu.; Mainardi, F.: Wright functions as scale-invariant solutions of the diffusion-wave equation. Journal of computational and applied mathematics 118, 175-191 (2000) · Zbl 0973.35012
[7] R. Gorenflo, Yu. Luchko, S. Rogozin, Mittag--Leffler type functions: notes on growth properties and distribution of zeros, Pre-print A-04/97, Fachbereich Mathematik und Informatik, Freie Universität, Berlin, 1997. Available from <http://www.math.fu-berlin.de/publ/index.html>
[8] Gorenflo, R.; Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. Fractals and fractional calculus in continuum mechanics, 223-276 (1997)
[9] Gorenflo, R.; Mainardi, F.; Srivastava, H. M.: Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. Proceedings VIII international colloquium on differential equations, plovdiv 1997, 195-202 (1998) · Zbl 0921.33009
[10] Kiryakova, V.: Generalized fractional calculus and applications. Pitman research notes in mathematics 301 (1994)
[11] Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Applied mathematics letters 9, No. 6, 23-28 (1996) · Zbl 0879.35036
[12] Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, solitons and fractals 7, 1461-1477 (1996) · Zbl 1080.26505
[13] Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. Fractals and fractional calculus in continuum mechanics, 291-348 (1997) · Zbl 0917.73004
[14] Mainardi, F.; Gorenflo, R.: On Mittag--Leffler-type functions in fractional evolution processes. Journal of computational and applied mathematics 118, 283-299 (2000) · Zbl 0970.45005
[15] Mainardi, F.; Luchko, Yu.; Pagnini, G.: The fundamental solution of the space--time fractional diffusion equation. Fractional calculus and applied analysis 4, No. 2, 153-192 (2001) · Zbl 1054.35156
[16] F. Mainardi, G. Pagnini, Salvatore Pincherle: the pioneer of the Mellin--Barnes integrals, J. Comput. Appl. Math., in press. 6th International Symposium on Orthogonal Polynomials, Special Functions and Applications, Roma-Ostia, Italy, June 18--22, 2001
[17] Marichev, O. I.: Handbook of integral transforms of higher transcendental functions, theory and algorithmic tables. (1983) · Zbl 0494.33001
[18] Mathai, A. M.; Saxena, R. K.: The H-function with applications in statistics and other disciplines. (1978) · Zbl 0382.33001
[19] Metzler, R.; Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics reports 339, 1-77 (2000) · Zbl 0984.82032
[20] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[21] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications. (1993) · Zbl 0818.26003
[22] Srivastava, H. M.; Gupta, K. C.; Goyal, S. P.: The H-functions of one and two variables with applications. (1982) · Zbl 0506.33007
[23] Srivastava, H. M.; Kashyap, B. R. K.: Special functions in queuing theory and related stochastic processes. (1982) · Zbl 0492.60089