## Stability of functional equations in single variable.(English)Zbl 1053.39042

Some functional equations in a single variable are considered: the linear equation $$\varphi\bigl(f(x)\bigr)=g(x)\varphi(x)+h(x)$$ with given functions $$f,g,h$$ and an unknown function $$\varphi$$, the linear equation $$\varphi(x)=g(x)\varphi\bigl(f(x)\bigr)+h(x)$$, the nonlinear equation $$\varphi(x)=F\bigl(x,\varphi\bigl(f(x)\bigr)\bigr)$$ and the iterative equation $$G\bigl(\varphi(x),\varphi^2(x),\dots,\varphi^n(x)\bigr)=F(x)$$.
The known results concerning Hyers-Ulam stability and the iterative stability of these equations and of their special cases are surveyed. The authors give also some new results. Namely, the Hyers-Ulam stability of Böttcher’s equation $$\varphi\bigl(f(x)\bigr)=\varphi(x)^p$$ ($$p\neq 1$$) and of the iterative equation $$G\bigl(x,\varphi(x),\varphi^2(x),\dots,\varphi^n(x)\bigr)=F(x)$$ is established.

### MSC:

 39B82 Stability, separation, extension, and related topics for functional equations 26A18 Iteration of real functions in one variable 39B12 Iteration theory, iterative and composite equations 39B22 Functional equations for real functions
Full Text:

### References:

 [1] Baker, J.A., The stability of certain functional equations, Proc. amer. math. soc., 112, 729-732, (1991) · Zbl 0735.39004 [2] Borelli, C., On hyers – ulam stability of hosszú’s functional equation, Result. math., 26, 221-224, (1994) · Zbl 0828.39019 [3] Brydak, D., On the stability of the functional equation ϕ[f(x)]=g(x)ϕ(x)+F(x), Proc. amer. math. soc., 26, 455-460, (1970) · Zbl 0209.15802 [4] Brydak, D., Iterative stability of the Böttcher equation, (), 15-18 · Zbl 0844.39002 [5] Choczewski, B.; Turdza, E.; Wegrzyk, R., On the stability of a linear functional equation, Rocznik nauk.-dydakt. prace mat. IX, 69, 15-21, (1979) [6] Forti, G.L., Hyers – ulam stability of functional equations in several variables, Aequationes math., 50, 143-190, (1995) · Zbl 0836.39007 [7] Gǎvruta, P., A generalization of the hyers – ulam – rassias stability of approximately additive mappings, J. math. anal. appl., 184, 431-436, (1994) · Zbl 0818.46043 [8] Ger, R.; S̆emrl, P., The stability of the exponential equation, Proc. amer. math. soc., 124, 779-787, (1996) · Zbl 0846.39013 [9] Hyers, D.H., On the stability of the linear functional equation, Proc. nat. acad. sci. USA, 27, 222-224, (1941) · Zbl 0061.26403 [10] Hyers, D.H., The stability of homomorphisms and related topics. in global analysis – analysis on manifolds, Teubner-texte math., 57, 140-153, (1983) · Zbl 0517.22001 [11] Hyers, D.H.; Rassias, Th.M., Approximate homomorphisms, Aequationes math., 44, 125-153, (1992) · Zbl 0806.47056 [12] Jung, S.-M., On the stability of gamma functional equation, Result. math., 33, 306-309, (1998) · Zbl 0907.39027 [13] Jung, S.-M., On the modified hyers – ulam – rassias stability of the functional equation for gamma function, Mathematica, 39, 233-237, (1997) · Zbl 0907.39026 [14] Jung, S.-M., On a general Hyers-Ulam stability of gamma functional equation, Bull. Korean math. soc., 34, 437-446, (1997) · Zbl 0965.39023 [15] Kim, G.H., On the stability of generalized gamma functional equation, Internat. J. math. math. sci., 23, 513-520, (2000) · Zbl 0955.39010 [16] Kim, G.H., On the stability of functional equations with square-symmetric operation, Math. inequal. appl., 4, 257-266, (2001) · Zbl 0990.39028 [17] Kim, G.H.; Xu, B.; Zhang, W., Notes on stability of the generalized gamma functional equation, Internat. J. math. math. sci., 32, 57-63, (2002) · Zbl 1013.39015 [18] Kuczma, M.; Choczewski, B.; Ger, R., Iterative functional equations, Encyclopedia math. appl., 32, (1990), Cambridge Univ. Press [19] Lee, S.H.; Jun, K.W., The stability of the equation f(x+p)=kf(x), Bull. Korean math. soc., 35, 653-658, (1998) · Zbl 0917.39008 [20] Lee, Y.H.; Jun, K.W., A generalization of the hyers – ulam – rassias stability of Jensen’s equation, J. math. anal. appl., 238, 305-315, (1999) · Zbl 0933.39053 [21] Miura, T.; Takahasi, S.; Choda, H., On the hyers – ulam stability of real continuous function valued differentiable map, Tokyo J. math., 24, 467-476, (2001) · Zbl 1002.39039 [22] Miura, T., On the hyers – ulam stability of a differentiable map, Sci. math. Japan, 55, 17-24, (2002) · Zbl 1025.47041 [23] Nikodem, K., The stability of the Pexider equations, Ann. math. sil., 5, 91-93, (1991) [24] Rassias, T.M., On the stability of the linear mapping in Banach spaces, Proc. amer. math. soc., 72, 297-300, (1978) · Zbl 0398.47040 [25] Si, J., Continuous solutions for the iterative equation G(f(x),fn1(x),…,fnk(x)), Chinese J. math. res. exp., 15, 149-150, (1995), (in Chinese) [26] Székelyhidi, L., The stability of the sine and cosine functional equations, Proc. amer. math. soc., 110, 109-115, (1990) · Zbl 0718.39004 [27] Tiberiu, T., On the stability of a general gamma-type functional equation, Publ. math. debrecen, 60, 47-61, (2002) · Zbl 1004.39023 [28] Turdza, E., On the stability of the functional equation φ[f(x)]=g(x)φ(x)+F(x), Proc. amer. math. soc., 30, 484-486, (1971) · Zbl 0224.39005 [29] Turdza, E., The stability of an iterative linear equation, (), 277-285 [30] Ulam, S.M., Problems in modern mathematics, (1964), Wiley New York · Zbl 0137.24201 [31] Wang, X.; Si, J., Differentiable solutions of an iterative functional equation, Aequationes math., 61, 79-96, (2001) · Zbl 0976.39016 [32] Xu, B.; Zhang, W., Hyers – ulam stability for a nonlinear iterative equation, Colloq. math., 93, 1-9, (2002) · Zbl 1018.39017 [33] Zhang, W., Discussion on the iterated equation ∑_{i=1}nλifi(x)=F(x), Chinese sci. bull., 32, 1444-1451, (1987) · Zbl 0639.39006 [34] Zhang, W., Stability of the solution of the iterated equation ∑_{i=1}nλifi(x)=F(x), Acta math. sci., 8, 421-424, (1988) · Zbl 0664.39004 [35] Zhang, W., Discussion on the differentiable solutions of the iterated equation ∑_{i=1}nλifi(x)=F(x), Nonlinear anal., 15, 387-398, (1990) · Zbl 0717.39005 [36] Zhang, W.; Baker, J.A., Continuous solutions for a polynomial-like iterative equation with variable coefficients, Ann. polon. math., 73, 29-36, (2000) · Zbl 0983.39011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.