# zbMATH — the first resource for mathematics

The boundary-Wecken classification of surfaces. (English) Zbl 1053.55002
Let $$X$$ be a compact $$n$$-manifold and $$f: X \to X$$ be a map. The Nielsen number, $$N(f)$$, of $$f$$ is the number of essential fixed point classes; and $$MF[f]$$ is the minimum number of fixed points for all maps homotopic to $$f$$. Wecken proved that if $$n \geq 3$$ then $$N(f)=MF[f]$$; thus $$X$$ is said to have the Wecken property if $$N(f)=MF[f]$$ for every map $$f: X \to X$$. On the other hand, a manifold $$X$$ is said to be totally non-Wecken if, given an integer $$k \geq 1$$, there is a map $$f_k: X \to X$$ such that $$MF[f_k] - N(f_k) \geq k$$. The Wecken classification of surfaces says that a compact surface $$X$$ whose Euler characteristic is non-negative has the Wecken property; and that all other surfaces are totally non-Wecken.
Let $$f: (X, \partial X) \to (X, \partial X)$$ be a boundary-preserving self-map of a compact $$n$$-manifold with boundary $$\partial X$$, and let $$\overline f : \partial X \to \partial X$$ be the restriction of $$f$$ to the boundary. The minimum number of fixed points for all maps of pairs homotopic to $$f$$ (through boundary-preserving maps) is denoted by $$M_\partial F[f]$$; the relative Nielsen number, $$N_\partial (f)$$, is the sum of the number of essential fixed point classes of $$\overline f$$ and the number of essential fixed point classes of $$f$$ that do not contain essential fixed point classes of $$\overline f$$. The manifold $$X$$ is said to have the boundary-Wecken property if $$N_\partial (f)=MF_\partial [f]$$ for all maps of pairs $$f: (X, \partial X) \to (X, \partial X)$$; $$X$$ is said to be totally non-boundary-Wecken if, given $$k \geq 1$$, there is a map $$f_k: (X, \partial X) \to (X, \partial X)$$ such that $$MF_\partial [f] - N_\partial (f) \geq k$$. $$X$$ is said to have the almost boundary-Wecken property if $$X$$ does not have the boundary-Wecken property, but there is an integer $$B \geq 1$$ such that $$MF_\partial [f] - N_\partial (f) \leq B$$ for all maps $$f: (X, \partial X) \to (X, \partial X)$$. The following results are proved.
Theorem 2. If $$X$$ is the Möbius band with one open disc removed then for any map $$f: (X, \partial X) \to (X, \partial X)$$, $$MF_\partial [f] - N_\partial (f) \leq 1$$.
Theorem 3 (Boundary-Wecken classification of surfaces). Let $$X$$ be a compact surface with a non-empty boundary. (a) If $$X$$ is a disc, an annulus or a Möbius band, then $$X$$ has the boundary-Wecken property. (b) If $$X$$ is a disc with two discs removed or the Möbius band with one disc removed, then $$X$$ has the almost boundary-Wecken property, with $$B=1$$. (c) All other surfaces with boundary are totally non-boundary-Wecken.

##### MSC:
 55M20 Fixed points and coincidences in algebraic topology 54H25 Fixed-point and coincidence theorems (topological aspects) 57N05 Topology of the Euclidean $$2$$-space, $$2$$-manifolds (MSC2010)
Full Text:
##### References:
 [1] L E J Brouwer, Über die Minimalzahl der Fixpunkte bei den Klassen von eindeutigen stetigen Transformationen der Ringlfächen, Math. Ann. 82 (1920) 94 · JFM 47.0528.01 · doi:10.1007/BF01457978 [2] R F Brown, B J Sanderson, Fixed points of boundary-preserving maps of surfaces, Pacific J. Math. 158 (1993) 243 · Zbl 0786.57005 · doi:10.2140/pjm.1993.158.243 [3] S Buoncristiano, C P Rourke, B J Sanderson, A geometric approach to homology theory, London Mathematical Society Lecture Note Series 18, Cambridge University Press (1976) · Zbl 0315.55002 [4] P R Heath, A Nielsen type number for fibre preserving maps, Topology Appl. 53 (1993) 19 · Zbl 0789.55003 · doi:10.1016/0166-8641(93)90098-X [5] P R Heath, E Keppelmann, P N S Wong, Addition formulae for Nielsen numbers and for Nielsen type numbers of fibre preserving maps, Topology Appl. 67 (1995) 133 · Zbl 0845.55004 · doi:10.1016/0166-8641(95)00019-8 [6] B J Jiang, Commutativity and Wecken properties for fixed points on surfaces and 3-manifolds, Topology Appl. 53 (1993) 221 · Zbl 0791.55002 · doi:10.1016/0166-8641(93)90138-4 [7] B J Jiang, J H Guo, Fixed points of surface diffeomorphisms, Pacific J. Math. 160 (1993) 67 · Zbl 0829.55001 · doi:10.2140/pjm.1993.160.67 [8] B Jiang, The Wecken property of the projective plane, Banach Center Publ. 49, Polish Acad. Sci. (1999) 223 · Zbl 0938.55004 · eudml:208962 [9] M R Kelly, Minimizing the number of fixed points for self-maps of compact surfaces, Pacific J. Math. 126 (1987) 81 · Zbl 0571.55003 · doi:10.2140/pjm.1987.126.81 [10] M R Kelly, The relative Nielsen number and boundary-preserving surface maps, Pacific J. Math. 161 (1993) 139 · Zbl 0794.55002 · doi:10.2140/pjm.1993.161.139 [11] M R Kelly, Fixed points of boundary-preserving maps on punctured projective planes, Topology Appl. 124 (2002) 145 · Zbl 1019.55001 · doi:10.1016/S0166-8641(01)00244-9 [12] J K Nolan, Fixed points of boundary-preserving maps of punctured discs, Topology Appl. 73 (1996) 57 · Zbl 0899.55001 · doi:10.1016/0166-8641(96)00034-X [13] H Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986) 459 · Zbl 0553.55001 · doi:10.2140/pjm.1986.122.459 [14] R Skora, The degree of a map between surfaces, Math. Ann. 276 (1987) 415 · Zbl 0595.57011 · doi:10.1007/BF01450838 · eudml:164208 [15] F Wecken, Fixpunktklassen III: Mindestzahlen von Fixpunkten, Math. Ann. 118 (1942) 544 · Zbl 0027.26503 · doi:10.1007/BF01487386 · eudml:160105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.