Kukush, O. G.; Mishura, Yu. S. Asymptotic effiency of statistical estimates in compound Poisson model. (Ukrainian, English) Zbl 1053.62094 Teor. Jmovirn. Mat. Stat. 68, 61-73 (2003); translation in Theory Probab. Math. Stat. 68, 67-80 (2004). The authors deal with estimation of parameters of a stochastic process \(X(t)=\sum_{k=0}^{N(t)}(1+\xi_{k})\), where \(N(t)\) is a homogeneous Poisson process with parameter \(\lambda_{p}>0\), \(\xi_{k}\) has a Poisson distribution with parameter \(\lambda_{D}>0\), \(N(t)\) and \(\xi_{k},\;k\geq1\) are independent. Let \(\nu(t,A)\) be the number of jumps of the process \(X(t)\) till the moment \(t\), with values of jumps from the set \(A\subset {\mathbb N}\). The authors obtain the maximum likelihood estimates of \(\lambda_{p}\) and \(\lambda_{D}\): \[ \widehat\lambda_{p}= \nu(t,[1,\infty))/ t,\quad \widehat\lambda_{d}= \nu^{-1} (t,[1,\infty)) \sum_{k=2}^{\infty}(k-1)\nu(t,\{ k\}), \] and prove that these estimates are consistent, locally asymptotic normal and asymptotically efficient. Reviewer: A. D. Borisenko (Kyïv) MSC: 62M09 Non-Markovian processes: estimation 62F12 Asymptotic properties of parametric estimators 62M05 Markov processes: estimation; hidden Markov models 62F10 Point estimation Keywords:asymptotic effiency; statistical estimates; compound Poisson model; maximum likelihood estimates PDFBibTeX XMLCite \textit{O. G. Kukush} and \textit{Yu. S. Mishura}, Teor. Ĭmovirn. Mat. Stat. 68, 61--73 (2003; Zbl 1053.62094); translation in Theory Probab. Math. Stat. 68, 67--80 (2004)