[1] |
Horst, R.; Tuy, H.: Global optimization: deterministic approaches. (1993) · Zbl 0704.90057 |

[2] |
Floudas, C. A.; Visweswaran, V.: Quadratic optimization. Handbook of global optimization, nonconvex optimization and its applications, 217-270 (1995) · Zbl 0833.90091 |

[3] |
Ecker, J. G.: Geometric programming: methods, computations and applications. SIAM review 22, 338-362 (1980) · Zbl 0438.90088 |

[4] |
Avriel, M.; Williams, A. C.: An extension of geometric programming with applications in engineering optimization. Journal of engineering mathematics 5, No. 3, 187-199 (1971) |

[5] |
Jefferson, T. R.; Scott, C. H.: Generalized geometric programming applied to problems of optimal control: I. Theory. Journal of optimization theory and applications 26, 117-128 (1978) · Zbl 0369.90120 |

[6] |
Sui, Y. -K: The expansion of functions under transformation and its application to optimization. Computer methods in applied mechanics and engineering 113, 253-262 (1994) · Zbl 0847.73076 |

[7] |
Das, K.; Roy, T. K.; Maiti, M.: Multi-item inventory model with under imprecise objective and restrictions: a geometric programming approach. Production planning & control 11, No. 8, 781-788 (2000) |

[8] |
Hansen, P.; Jaumard, B.: Reduction of indefinite quadratic programs to bilinear programs. Journal of global optimization 2, No. 1, 41-60 (1992) · Zbl 0786.90050 |

[9] |
Beightler, C. S.; Phillips, D. T.: Applied geometric programming. (1976) · Zbl 0344.90034 |

[10] |
Passy, U.: Generalized weighted mean programming. SIAM journal on applied mathematics 20, 763-778 (1971) · Zbl 0233.90021 |

[11] |
Passy, U.; Wilde, D. J.: Generalized polynomial optimization. Journal on applied mathematics 15, No. 5, 1344-1356 (1967) · Zbl 0171.18002 |

[12] |
Kortanek, K. O.; Xu, X.; Ye, Y.: An infeasible interior-point algorithm for solving primal and dual geometric programs. Math. program. 76, 155-181 (1997) · Zbl 0881.90106 |

[13] |
Sherali, H. D.; Tuncbilek, C. H.: A global optimization algorithm for polynomial programming problems using a reformulation--linearzation technique. Journal of global optimization 2, 101-112 (1992) · Zbl 0787.90088 |

[14] |
Sherali, H. D.; Tuncbilek, C. H.: A reformulation--convexification approach for solving nonconvex quadratic programming problems. Journal of global optimization 7, 1-31 (1995) · Zbl 0844.90064 |

[15] |
Maranas, C. D.; Floudas, C. A.: Global optimization in generalized geometric programming. Computers and chemical engineering 21, No. 4, 351-369 (1997) |

[16] |
Sherali, H. D.: Global optimization of nonconvex polynomial programming problems having rational exponents. Journal of global optimization 12, 267-283 (1998) · Zbl 0905.90146 |

[17] |
Horst, R.: Deterministic global optimization with partition sets whose feasibility is not known: application to concave minimization, reverse convex constraints, DC-programming, and Lipschitzian optimization. Journal of optimization theory and applications 58, No. 1, 11-37 (1988) · Zbl 0621.90064 |

[18] |
Tuy, H.: Effect of the subdivision strategy on convergence and efficiency of some global optimization algorithms. Journal of global optimization 1, No. 1, 23-36 (1991) · Zbl 0744.90083 |

[19] |
Rijckaert, M. J.; Martens, X. M.: Comparison of generalized geometric programming algorithms. Journal of optimization theory and application 26, 205-241 (1978) · Zbl 0369.90112 |