Lions, Jacques-Louis; Zuazua, Enrique Exact boundary controllability of Galerkin’s approximations of Navier-Stokes equations. (English) Zbl 1053.93009 Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 26, No. 4, 605-621 (1998). Summary: We consider the 2D and 3D Navier-Stokes equations in a bounded smooth domain with a boundary control acting on the system through the Navier slip boundary conditions. We introduce a finite-dimensional Galerkin approximation of this system. Under suitable assumptions on the Galerkin basis we prove that this Galerkin approximation is exactly controllable. Moreover, we prove that the cost of control is independent of the presence of a nonlinearity on the system. Our assumptions on the Galerkin basis are related to the linear independence of suitable traces of its elements over the boundary. In this respect, the one-dimensional Burgers equation provides a particularly degenerate example that we study in detail. In this case we prove local controllability results. Cited in 13 Documents MSC: 93B05 Controllability 35Q30 Navier-Stokes equations 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs 76D05 Navier-Stokes equations for incompressible viscous fluids × Cite Format Result Cite Review PDF Full Text: Numdam EuDML References: [1] J.M. Coron , On the controllability of 2D incompressible perfect fluids , J. Math. Pures Appl. 75 ( 1996 ), 155 - 188 . MR 1380673 | Zbl 0848.76013 · Zbl 0848.76013 [2] J.M. Coron , On the controllability of the 2D incompressible Navier-Stokes equations with the Navier slip boundary condition , ESAIM:COCV 1 ( 1996 ), 35 - 75 ( http: // www. emath.fr/cocv/ ). Numdam | MR 1393067 | Zbl 0872.93040 · Zbl 0872.93040 · doi:10.1051/cocv:1996102 [3] J.M. Coron - A. Fursikov , Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary , Russian J. Math. Phys. 4 ( 4 ) ( 1996 ), 1 - 19 . MR 1470445 | Zbl 0938.93030 · Zbl 0938.93030 [4] A. Fursikov - O. Yu. Imanuvilov , ” Controllability of evolution equations ”, Lecture Notes Series 34 , Research Institute of Mathematics, Global Analysis Research Center, Seoul National University , Korea, 1996 . MR 1406566 | Zbl 0862.49004 · Zbl 0862.49004 [5] J.-L. Lions ,” Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires ”; Dunod , Paris , 1969 . MR 259693 | Zbl 0189.40603 · Zbl 0189.40603 [6] J.-L. Lions , Are there connections between turbulence and controllability ?, In: ” Analyse et optimisation des systèmes ”, Lecture Notes in Control and Information Sciences vol. 144 , Springer-Verlag , Berlin - Heidelberg - New York , 1990 . [7] J.L. Lions , On the approximate controllability with global state constraints, In: ”Computational Science for the 21st Century” , M. O. Bristeau et al. eds., Wiley , 1977 , pp. 718 - 727 . Zbl 0914.93012 · Zbl 0914.93012 [8] J.-L. Lions - E. Magenes , ” Problèmes aux Limites Non Homogènes et applications ”, Dunod , Paris , 1968 . Zbl 0165.10801 · Zbl 0165.10801 [9] J.-L. Lions - E. Zuazua ,, A generic uniqueness result for the Stokes system and its control theoretical consequences , In: ” Partial Differential Equations and Applications ”, P. Marcellini et al. (eds.), Marcel Dekker Inc. LNPAS 177 , 1996 , p. 221 - 235 . MR 1371594 | Zbl 0852.35112 · Zbl 0852.35112 [10] J.-L. Lions - E. Zuazua , Contrôlabilité exacte des approximations de Galerkin des équations de Navier-Stokes , C. R. Acad. Sci. Paris Sér. I.Math. 234 ( 1997 ), 1015 - 1021 . MR 1451243 | Zbl 0894.93020 · Zbl 0894.93020 · doi:10.1016/S0764-4442(97)87878-0 [11] J.-L. Lions - E. Zuazua , On the cost of controlling unstable systems: The case of boundary controls , J. Anal. Math ., to appear. MR 1616414 | Zbl 0892.93036 · Zbl 0892.93036 · doi:10.1007/BF02788145 [12] R.T. Rockafellar , ” Convex Analysis ”, Princeton University Press , Princeton, N. J. , 1969 . MR 1451876 | Zbl 0193.18401 · Zbl 0193.18401 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.