Jensen, Craig A.; Wahl, Nathalie Automorphisms of free groups with boundaries. (English) Zbl 1054.20023 Algebr. Geom. Topol. 4, 543-569 (2004). The group \(A_{n,k}\) of automorphisms of a free group of rank \(n\) with \(k\) boundaries was introduced by the second author to show that the natural map from the stable mapping class group of surfaces to the stable automorphism group of free groups gives an infinite loop map on the classifying spaces of the groups after plus construction. There are geometrical and algebraical definitions of the groups considered. In the paper under review a contractible space \(L_{n,k}\) is constructed on which \(A_{n,k}\) acts with finite stabilizers and finite quotient space. So a range of the virtual cohomological dimension of \(A_{n,k}\) is deduced. Reviewer: V. A. Roman’kov (Omsk) Cited in 15 Documents MSC: 20F65 Geometric group theory 20F28 Automorphism groups of groups 20E05 Free nonabelian groups Keywords:automorphism groups; mapping class groups; boundaries; free groups; virtual cohomological dimension; classifying spaces PDF BibTeX XML Cite \textit{C. A. Jensen} and \textit{N. Wahl}, Algebr. Geom. Topol. 4, 543--569 (2004; Zbl 1054.20023) Full Text: DOI arXiv EuDML EMIS OpenURL References: [1] N Brady, J McCammond, J Meier, A Miller, The pure symmetric automorphisms of a free group form a duality group, J. Algebra 246 (2001) 881 · Zbl 0995.20010 [2] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982) · Zbl 0584.20036 [3] A Brownstein, R Lee, Cohomology of the group of motions of \(n\) strings in 3-spaceottingen, 1991/Seattle, WA, 1991)”, Contemp. Math. 150, Amer. Math. Soc. (1993) 51 · Zbl 0804.20033 [4] D J Collins, Cohomological dimension and symmetric automorphisms of a free group, Comment. Math. Helv. 64 (1989) 44 · Zbl 0669.20027 [5] M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91 · Zbl 0589.20022 [6] D Dahm, A generalization of braid theory, PhD thesis, Princeton University (1962) [7] D L Goldsmith, The theory of motion groups, Michigan Math. J. 28 (1981) 3 · Zbl 0462.57007 [8] J L Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. \((2)\) 121 (1985) 215 · Zbl 0579.57005 [9] A Hatcher, Algebraic topology, Cambridge University Press (2002) · Zbl 1044.55001 [10] A Hatcher, K Vogtmann, Cerf theory for graphs, J. London Math. Soc. \((2)\) 58 (1998) 633 · Zbl 0922.57001 [11] A Hatcher, N Wahl, Stabilization for the automorphisms of free groups with boundaries, Geom. Topol. 9 (2005) 1295 · Zbl 1087.57003 [12] C A Jensen, Cohomology of \(\mathrm{Aut}(F_n)\) in the \(p\)-rank two case, J. Pure Appl. Algebra 158 (2001) 41 · Zbl 0977.20042 [13] C A Jensen, Contractibility of fixed point sets of auter space, Topology Appl. 119 (2002) 287 · Zbl 0997.20042 [14] C Jensen, J McCammond, J Meier, The Euler characteristic of the Whitehead automorphism group of a free product, Trans. Amer. Math. Soc. 359 (2007) 2577 · Zbl 1124.20037 [15] C A Jensen, Homology of holomorphs of free groups, J. Algebra 271 (2004) 281 · Zbl 1040.20022 [16] S Krstić, Actions of finite groups on graphs and related automorphisms of free groups, J. Algebra 124 (1989) 119 · Zbl 0675.20025 [17] S Krstić, K Vogtmann, Equivariant outer space and automorphisms of free-by-finite groups, Comment. Math. Helv. 68 (1993) 216 · Zbl 0805.20030 [18] G Levitt, Automorphisms of hyperbolic groups and graphs of groups, Geom. Dedicata 114 (2005) 49 · Zbl 1107.20030 [19] I Madsen, U Tillmann, The stable mapping class group and \(Q(\mathbb C \roman P^ \infty_+)\), Invent. Math. 145 (2001) 509 · Zbl 1050.55007 [20] I Madsen, M Weiss, The stable moduli space of Riemann surfaces: Mumford’s conjecture, Ann. of Math. \((2)\) 165 (2007) 843 · Zbl 1156.14021 [21] W Magnus, A Karrass, D Solitar, Combinatorial group theory, Dover Publications (1976) · Zbl 0362.20023 [22] J McCammond, J Meier, The hypertree poset and the \(l^2\)-Betti numbers of the motion group of the trivial link, Math. Ann. 328 (2004) 633 · Zbl 1133.20040 [23] J McCool, A presentation for the automorphism group of a free group of finite rank, J. London Math. Soc. \((2)\) 8 (1974) 259 · Zbl 0296.20010 [24] J McCool, Some finitely presented subgroups of the automorphism group of a free group, J. Algebra 35 (1975) 205 · Zbl 0325.20025 [25] J McCool, On basis-conjugating automorphisms of free groups, Canad. J. Math. 38 (1986) 1525 · Zbl 0613.20024 [26] D McCullough, A Miller, Symmetric automorphisms of free products, Mem. Amer. Math. Soc. 122 (1996) · Zbl 0860.20029 [27] D Quillen, Homotopy properties of the poset of nontrivial \(p\)-subgroups of a group, Adv. in Math. 28 (1978) 101 · Zbl 0388.55007 [28] U Tillmann, On the homotopy of the stable mapping class group, Invent. Math. 130 (1997) 257 · Zbl 0891.55019 [29] N Wahl, From mapping class groups to automorphism groups of free groups, J. London Math. Soc. \((2)\) 72 (2005) 510 · Zbl 1081.55008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.