Geiges, Hansjörg; Rattaggi, Diego Periodic automorphisms of surfaces: Invariant circles and maximal orders. (English) Zbl 1054.30039 Exp. Math. 9, No. 1, 75-84 (2000). Summary: W. H. Meeks has asked the following question: For what \(g\) does every (orientation preserving) periodic automorphism of a closed orientable surface of genus \(g\) have an invariant circle? A variant of this question due to R. D. Edwards asks for the existence of invariant essential circles. Using a construction of Meeks we show that the answer to his question is negative for all but 43 values of \(g\leq 10000\), all of which lie below \(g=105\). We then show that the work of S. C. Wang on Edwards’ question generalizes to nonorientable surfaces and automorphisms of odd order. Motivated by this, we ask for the maximal odd order of a periodic automorphism of a given nonorientable surface. We obtain a fairly complete answer to this question and also observe an amusing relation between this order and Fermat primes. MSC: 30F10 Compact Riemann surfaces and uniformization 14J50 Automorphisms of surfaces and higher-dimensional varieties × Cite Format Result Cite Review PDF Full Text: DOI Euclid EuDML Online Encyclopedia of Integer Sequences: Genera g such that every orientation-preserving periodic automorphism of the closed orientable surface of genus g has an invariant circle. References: [1] Berstein I., Trans. Amer. Math. Soc. 247 pp 87– (1979) · doi:10.1090/S0002-9947-1979-0517687-9 [2] Bujalance E., Pacific J. Math. 109 (2) pp 279– (1983) [3] Bujalance E., Automorphism groups of compact bordered Klein surfaces (1990) · Zbl 0709.14021 [4] do Carmo M. P., Riemannian geometry (1992) [5] Chillingworth D. R. J., Math. Ann. 199 pp 131– (1972) · Zbl 0231.57002 · doi:10.1007/BF01431419 [6] Harvey W. J., Quart. J. Math. Oxford Ser. (2) 17 pp 86– (1966) · Zbl 0156.08901 · doi:10.1093/qmath/17.1.86 [7] Kirby R., Geometric topology (Athens, GA, 1993) 2 pp 35– (1997) [8] Meeks W. H., J. Differential Geom. 14 (3) pp 377– (1979) [9] Meeks W. H., Illinois J. Math. 22 (2) pp 262– (1978) [10] Miranda R., Algebraic curves and Riemann surfaces (1995) · Zbl 0820.14022 [11] Rattaggi D., Invariante Kreise unter Flächenautomorphismen (1998) [12] Scott P., Bull. London Math. Soc. 15 (5) pp 401– (1983) · Zbl 0561.57001 · doi:10.1112/blms/15.5.401 [13] Steiger F., Comment. Math. Helv. 8 pp 48– (1935) · Zbl 0012.22802 · doi:10.1007/BF01199547 [14] Thurston W. P., Three-dimensional geometry and topology (1985) [15] Wang S. C., Differential geometry and topology (Tianjin, 1986–87) pp 275– (1989) · doi:10.1007/BFb0087540 [16] Wang S. C., Topology Appl. 41 (3) pp 255– (1991) · Zbl 0761.57010 · doi:10.1016/0166-8641(91)90008-A [17] Wiman A., Bihang till Kungl. Svenska vetenskaps-akademiens handlingar 21 (1) pp 1– (1895) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.