[1] |
Hilfer, R.: Applications of fractional calculus in physics. (2000) · Zbl 0998.26002 |

[2] |
Podlubny, I.: Fractional differential equations, mathematics in science and engineering. 198 (1999) · Zbl 0924.34008 |

[3] |
Tu, S. -T.; Chyan, D. -K.; Srivastava, H. M.: Some families of ordinary and partial fractional differintegral equations. Integral transform. Spec. funct. 11, 291-302 (2001) · Zbl 1031.34003 |

[4] |
Srivastava, H. M.; Owa, S.; Nishimoto, K.: Some fractional differintegral equations. J. math. Anal. appl. 106, 360-366 (1985) · Zbl 0599.30026 |

[5] |
Nishimoto, K.: Fractional calculus. (1984) · Zbl 0605.26006 |

[6] |
Nishimoto, K.: Fractional calculus. 77 (1987) · Zbl 0702.26011 |

[7] |
Nishimoto, K.: Fractional calculus. (1989) · Zbl 0707.26009 |

[8] |
Nishimoto, K.: Fractional calculus. (1991) · Zbl 0897.34005 |

[9] |
Nishimoto, K.: Fractional calculus. (1996) · Zbl 0883.34003 |

[10] |
Nishimoto, K.: An essence of nishimoto’s fractional calculus, calculus of the 21st century: integration, and differentiations of arbitrary order. (1991) · Zbl 0798.26007 |

[11] |
Nishimoto, K.: N-method to nearly simple harmonic vibration equations. J. fract. Calc. 15, 67-72 (1999) · Zbl 0956.34002 |

[12] |
Nishimoto, K.: N-method to nearly simple harmonic vibration equation (Investigation of the solutions). J. fract. Calc. 20, 7-12 (2001) · Zbl 1046.34066 |

[13] |
Nishimoto, K.: Solutions to a nearly simple harmonic vibration equation by means of N-fractional calculus. Presented at the RIMS workshop on the study on applications for fractional calculus operators in univalent function theory held at the research institute for mathematical sciences (September 3--5, 2003) |

[14] |
Nishimoto, K.; Deromero, S. Salinas: N-method to nearly simple harmonic vibration equations (Continued). J. fract. Calc. 17, 19-24 (2000) |

[15] |
Ince, E. L.: Ordinary differential equations. (1956) · Zbl 0063.02971 |

[16] |
Giannantoni, C.: The problem of the initial conditions and their physical meaning in linear differential equations of fractional order. Appl. math. Comput 141, 87-102 (2003) · Zbl 1037.34004 |

[17] |
Gorenflo, R.; Mainardi, F.; Srivastava, H. M.: Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. Proceedings of the eighth international colloquium on differential equations, 195-202 (1998) · Zbl 0921.33009 |

[18] |
Iii, F. J. Molz; Iii, G. J. Fix; Liu, S.: A physical interpretation for the fractional derivative in Lévy diffusion. Appl. math. Lett. 15, No. 7, 907-911 (2002) · Zbl 1043.76056 |

[19] |
Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. calc. Appl. anal. 5, 367-386 (2002) · Zbl 1042.26003 |