×

zbMATH — the first resource for mathematics

Pseudospectra of semiclassical (pseudo-) differential operators. (English) Zbl 1054.35035
The authors show how methods from micro-local analysis can be applied to the study of the (pseudo-)spectra of non-selfadjoint operators arising in semiclassical analysis.

MSC:
35S05 Pseudodifferential operators as generalizations of partial differential operators
35J10 Schrödinger operator, Schrödinger equation
35P05 General topics in linear spectral theory for PDEs
47F05 General theory of partial differential operators
47G30 Pseudodifferential operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Borthwick , D. Uribe , A. On the pseudospectra of Berezin-Toeplitz operators · Zbl 1091.47039
[2] Boulton, Non-self-adjoint harmonic oscillator, compact semigroups and pseudospectra, J Operator Theory 47 (2) pp 413– (2002) · Zbl 1034.34099
[3] Chapman, Wave packet pseudomodes of twisted Toeplitz matrices, Comm Pure Appl Math · Zbl 1055.15014
[4] Davies, Pseudo-spectra, the harmonic oscillator and complex resonances, R Soc Lond Proc Ser A Math Phys Eng Sci 455 (1982) pp 585– (1999) · Zbl 0931.70016
[5] Davies, Semi-classical states for non-self-adjoint Schrödinger operators, Comm Math Phys 200 (1) pp 35– (1999) · Zbl 0921.47060
[6] Davies, Non-self-adjoint differential operators, Bull London Math Soc 34 (5) pp 513– (2002) · Zbl 1052.47042
[7] Dimassi, London Mathematical Society Lecture Note Series 268, in: Spectral asymptotics in the semi-classical limit (1999)
[8] Duistermaat, A global construction for pseudo-differential operators with non-involutive characteristics, Invent Math 20 pp 209– (1973) · Zbl 0282.35071
[9] Gohberg, Translations of Mathematical Monographs 18, in: Introduction to the theory of linear nonselfadjoint operators (1969)
[10] Helffer, Résonances en limite semi-classique, Mém Soc Math France (N S) (24) (1986)
[11] Hitrik , M. Propagator expansions for damped wave equations · Zbl 1213.35329
[12] Hörmander, Differential operators of principal type, Math Ann 140 pp 124– (1960) · Zbl 0090.08101
[13] Differential equations without solutions, Math Ann 140 pp 169– (1960) · Zbl 0093.28903
[14] Hörmander , L. The analysis of linear partial differential operators I. Distribution theory and Fourier analysis Grundlehren der Mathematischen Wissenschaften 256 · Zbl 0712.35001
[15] Hörmander, Grundlehren der Mathematischen Wissenschaften 257, in: The analysis of linear partial differential operators (1983)
[16] Hörmander , L. The analysis of linear partial differential operators III. Pseudodifferential operators Grundlehren der Mathematischen Wissenschaften 274 · Zbl 0601.35001
[17] IV. Fourier integral operators Grundlehren der Mathematischen Wissenschaften 275 Springer Berlin 1985
[18] Hörmander, Structure of solutions of differential equations pp 183– (1996)
[19] Kashiwara, Micro-hyperbolic pseudo-differential operators. I, J Math Soc Japan 27 (3) pp 359– (1975) · Zbl 0305.35066
[20] Lerner , N. 2001
[21] Malgrange, Sur la propagation de la régularité des solutions des équations e èa coefficients constants, Bull Math Soc Sci Math Phys R P Roumaine (NS) 3 (51) pp 433– (1959)
[22] Markus, Translations of Mathematical Monographs 71, in: Introduction to the spectral theory of polynomial operator pencils (1988)
[23] Martinez, An introduction to semiclassical and microlocal analysis (2002) · Zbl 0994.35003
[24] Martinez, Resonance free domains for non globally analytic potentials, Ann Henri Poincaré 3 (4) pp 739– (2002) · Zbl 1026.81012
[25] Melin, Determinants of pseudodifferential operators and complex deformations of phase space, Methods Appl Anal 9 (2) pp 177– (2002) · Zbl 1082.35176
[26] Pravda-Starov , K. A general result about pseudospectrum for Schrödinger operators 2003
[27] Sjöstrand, Singularités analytiques microlocales, Astérisque 95 pp 1– (1982)
[28] Sjöstrand, Resonances for bottles and trace formulae, Math Nachr 221 pp 95– (2001) · Zbl 0979.35109
[29] Stefanov, Quasimodes and resonances: sharp lower bounds, Duke Math J 99 (1) pp 75– (1999) · Zbl 0952.47013
[30] Stefanov, Distribution of resonances for the Neumann problem in linear elasticity outside a strictly convex body, Duke Math J 78 (3) pp 677– (1995) · Zbl 0846.35139
[31] Tang, From quasimodes to resonances, Math Res Lett 5 (3) pp 261– (1998) · Zbl 0913.35101
[32] Trefethen, Pseudospectra of linear operators, SIAM Rev 39 (3) pp 383– (1997) · Zbl 0896.15006
[33] Trefethen , L. N. 2002
[34] Unterberger, Résolution d’équations aux dérivées partielles dans des espaces de distributions d’ordre de régularité variable, Ann Inst Fourier (Grenoble) 21 (2) pp 85– (1971)
[35] Unterberger, Les opérateurs pseudo-différentiels d’ordre variable, C R Acad Sci Paris 261 pp 2271– (1965)
[36] Zworski, Distribution of poles for scattering on the real line, J Funct Anal 73 (2) pp 277– (1987) · Zbl 0662.34033
[37] Zworski, A remark on a paper of E. B. Davies: ”Semi-classical states for non-self-adjoint Schrödinger operators.”, Comm Math Phys 200 (1) pp 35– (1999) · Zbl 0921.47060
[38] Proc Amer Math Soc 129 (10) pp 2955– (2001) · Zbl 0981.35107
[39] Zworski , M. Pseudospectra of semi-classical operators 2001
[40] Zworski, Numerical linear algebra and solvability of partial differential equations, Comm Math Phys 229 (2) pp 293– (2002) · Zbl 1021.35077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.