×

zbMATH — the first resource for mathematics

Divergence operators and odd Poisson brackets. (English) Zbl 1054.53094
Summary: We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket on the algebra, the operator that maps an element to the divergence of the hamiltonian derivation that it defines is a generator of the bracket. This is the “odd Laplacian”, \(\Delta\), of Batalin-Vilkovisky quantization. We then study the generators of odd Poisson brackets on supermanifolds, where divergences of graded vector fields can be defined either in terms of Berezinian volumes or of graded connections. Examples include generators of the Schouten bracket of multivectors on a manifold (the supermanifold being the cotangent bundle where the coordinates in the fibres are odd) and generators of the Koszul-Schouten bracket of forms on a Poisson manifold (the supermanifold being the tangent bundle, with odd coordinates on the fibres).

MSC:
53D17 Poisson manifolds; Poisson groupoids and algebroids
17B70 Graded Lie (super)algebras
17B63 Poisson algebras
58A50 Supermanifolds and graded manifolds
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
53C05 Connections, general theory
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML arXiv
References:
[1] The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys, A12, 1405-1429, (1997) · Zbl 1073.81655
[2] Gauge algebra and quantization, Phys. Lett., B 102, 27-31, (1981)
[3] Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nuclear Physics, B 234, 106-124, (1984)
[4] Introduction to Superanalysis, (1987), D. Reidel
[5] Graded Poisson structures on the algebra of differential forms, Comment. Math. Helv., 70, 383-402, (1995) · Zbl 0844.58025
[6] Graded Jacobi operators on the algebra of differential forms, Compositio Math., 106, 43-59, (1997) · Zbl 0874.58017
[7] Quantum fields and strings: A course for mathematicians, vol. 1, part 1, (1999), Amer. Math. Soc.
[8] Supermanifolds, (1984), Cambridge Univ. Press · Zbl 0551.53002
[9] Theory of vector-valued differential forms, part I, Indag. Math, 18, 338-359, (1956) · Zbl 0079.37502
[10] Batalin-Vilkovisky algebras and two-dimensional topological field theories, Commun. Math. Phys., 159, 265-285, (1994) · Zbl 0807.17026
[11] Developing the covariant Batalin-Vilkovisky approach to string theory, Ann. Phys., 229, 177-216, (1994) · Zbl 0784.53054
[12] Construction intrinsèque du faisceau de Berezin d’une variété graduée, Comptes Rendus Acad. Sci. Paris, Sér. I Math, 301, 915-918, (1985) · Zbl 0592.58042
[13] Variational Berezinian problems and their relationship with graded variational problems, Diff. Geometric Methods in Math. Phys. (Salamanca 1985), 1251, 137-149, (1987), Springer-Verlag · Zbl 0627.58020
[14] Poisson cohomology and quantization, J. für die reine und angew. Math., 408, 57-113, (1990) · Zbl 0699.53037
[15] Lie-rinehart algebras, gerstenhaber algebras, and Batalin-Vilkovisky algebras, Ann. Inst. Fourier, 48, 2, 425-440, (1998) · Zbl 0973.17027
[16] Duality for Lie-rinehart algebras and the modular class, J. für die reine und angew. Math., 510, 103-159, (1999) · Zbl 1034.53083
[17] Geometry of superspace with even and odd brackets, J. Math. Phys., 32, 1934-1937, (1991) · Zbl 0737.58063
[18] Batalin-Vilkovisky formalism and odd symplectic geometry, Geometry and integrable models (Dubna 1994), 144-181, (1996), World Sci. Publ.
[19] On the geometry of the Batalin-Vilkovisky formalism, Mod. Phys. Lett., A 8, 2377-2385, (1993) · Zbl 1021.81948
[20] From Poisson algebras to gerstenhaber algebras, Ann. Inst. Fourier, 46, 5, 1243-1274, (1996) · Zbl 0858.17027
[21] Modular vector fields and Batalin-Vilkovisky algebras, Banach Center Publications, 51, 109-129, (2000) · Zbl 1018.17020
[22] Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré, A53, 35-81, (1990) · Zbl 0707.58048
[23] Graded manifolds, graded Lie theory and prequantization, Proc. Conf. Diff. Geom. Methods in Math. Phys. (Bonn 1975), 570, 177-306, (1977) · Zbl 0358.53024
[24] Crochet de Schouten-Nijenhuis et cohomologie, Élie Cartan et les mathématiques d’aujourd’hui, 257-271, (1985), Soc. Math. Fr. · Zbl 0615.58029
[25] Schouten brackets and canonical algebras, 1334, 79-110, (1988), Springer-Verlag · Zbl 0661.53059
[26] Supercanonical algebras and Schouten brackets, Mat. Zametki, 49(1), 70-76, (1991) · Zbl 0723.58020
[27] Supercanonical algebras and Schouten brackets, Mathematical Notes, 49(1), 50-54, (1991) · Zbl 0732.58016
[28] Supermanifold theory, Karelia Branch of the USSR Acad. of Sci., Petrozavodsk (in Russian)., (1983)
[29] Quantization and supermanifolds, Supplément 3 in Berezin, (1991), Kluwer
[30] New perspectives on the BRST-algebraic structure of string theory, Commun. Math. Phys, 154, 613-646, (1993) · Zbl 0780.17029
[31] Gauge Field Theory and Complex Geometry, (1988), Springer-Verlag · Zbl 0641.53001
[32] The formalism of left and right connections on supermanifolds, Lectures on Supermanifolds, Geometrical Methods and Conformal Groups, Doebner H.-D., Hennig, J. D.PalevT. D.eds., 3-13, (1989), World Sci. Publ. · Zbl 0824.58007
[33] Integral curves of derivations, Ann. Global Anal. Geom., 6, 177-189, (1988) · Zbl 0632.58017
[34] The exterior derivative as a Killing vector field, Israel J. Math., 93, 157-170, (1996) · Zbl 0853.58010
[35] \({\mathcal D}\)-modules on supermanifolds, Invent. Math., 71, 501-512, (1983) · Zbl 0528.32012
[36] Integration on noncompact supermanifolds, Trans. Amer. Math. Soc., 299, 387-396, (1987) · Zbl 0611.58014
[37] Remarks on formal deformations and Batalin-Vilkovisky algebras
[38] Geometry of Batalin-Vilkovisky quantization, Commun. Math. Phys., 155, 249-260, (1993) · Zbl 0786.58017
[39] Semi-classical approximation in Batalin-Vilkovisky formalism, Commun. Math. Phys., 158, 373-396, (1993) · Zbl 0855.58005
[40] Deformation theory and the Batalin-Vilkovisky master equation, Deformation Theory and Symplectic Geometry (Ascona 1996), 271-284, (1997), Kluwer · Zbl 1149.81359
[41] Lectures on the Geometry of Poisson Manifolds, (1994), Birkhäuser · Zbl 0810.53019
[42] Geometric integration theory on supermanifolds, Sov. Sci. Rev. C Math, 9, 1-138, (1992) · Zbl 0839.58014
[43] The modular automorphism group of a Poisson manifold, J. Geom. Phys., 23, 379-394, (1997) · Zbl 0902.58013
[44] A note on the antibracket formalism, Mod. Phys. Lett., A5, 487-494, (1990) · Zbl 1020.81931
[45] Gerstenhaber algebras and BV-algebras in Poisson geometry, Commun. Math. Phys., 200, 545-560, (1999) · Zbl 0941.17016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.