zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The use of the Euler method in identification of multiple bifurcations and chaotic behavior in numerical approximation of delay-differential equations. (English) Zbl 1054.65126
Summary: A discrete model is proposed to delve into the rich dynamics of nonlinear delayed systems under Euler discretization, such as multiple bifurcations, stable limit cycles (periodic or quasiperiodic solutions), and chaotic behavior. A method of using a finite-dimensional discrete dynamical system to approximate an infinite-dimensional dynamical system is developed here. We find that the effect of breaking the symmetry of the system is to create a wide complex operating conditions which would not otherwise be seen. These include complex periodic oscillations, quasiperiodicity and chaos. A route from complex periodic/quasiperiodic oscillations to chaos and then to quasiperiodic oscillations can be observed. The delay model also gives a family of examples for chaotic behavior usable to demonstrate analyzing, controlling and anti-controlling schemes.

MSC:
65P30Bifurcation problems (numerical analysis)
37M20Computational methods for bifurcation problems
37D45Strange attractors, chaotic dynamics
37G15Bifurcations of limit cycles and periodic orbits
34K28Numerical approximation of solutions of functional-differential equations
37K50Bifurcation problems (infinite-dimensional systems)
Software:
Matlab
WorldCat.org
Full Text: DOI
References:
[1] Chen, G.; Yu, X.: On time-delayed feedback control of chaotic systems. IEEE trans circ syst 46, 767-772 (1999) · Zbl 0951.93034
[2] Dormayer, P.: The stability of special symmetric solutions of with small amplitudes. Non-linear anal TMA 14, No. 8, 701-715 (1990) · Zbl 0704.34086
[3] Dormayer, P.: Smooth bifurcation of symmetrical periodic solution of functional differential equations. J diff eqs 122, 109-155 (1989) · Zbl 0694.34058
[4] Faria, T.; Magalhães, L. T.: Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. J diff eqs 122, 181-200 (1995) · Zbl 0836.34068
[5] Ford, N. J.; Wulf, V.: The use of boundary locus plots in the identification of bifurcation points in numerical approximation of delay-differential equations. J comput appl math 111, 153-162 (1999) · Zbl 0941.65132
[6] Hadeler, K. P.: Effective computation of periodic orbits and bifurcation diagrams in delay equations. Numer math 34, 457-467 (1980) · Zbl 0419.34070
[7] Hairer, E.; Norsett, S. P.; Wanner, G.: Solving ordinary differential equations I. (1987)
[8] Hale, J. K.: Theory of functional differential equations. (1977) · Zbl 0352.34001
[9] Hao, B. L.: Elementary symbolic dynamics and chaos in dissipative systems. (1989) · Zbl 0724.58001
[10] Hout, K. In’t; Lubich, C.: Periodic orbits of delay-differential equations under discretization. Bit 38, No. 1, 72-91 (1998) · Zbl 0904.65066
[11] Iooss, G.: Bifurcation of maps and applications. (1979) · Zbl 0408.58019
[12] Kaplan, J. L.; Yorke, J. A.: Ordinary differential equations which yields periodic solutions of delay differential equations. J math anal appl 48, 317-324 (1974) · Zbl 0293.34102
[13] Kaymakcalan, B.; Lakshmikantham, V.; Sivasundaram, S.: Dynamical systems on measure chain. (1996) · Zbl 0869.34039
[14] Kolmanovskii, V. B.; Nosov, V. R.: Stability of functional differential equations. (1986) · Zbl 0593.34070
[15] Koto, T.: Naimark--Sacker bifurcations in the Euler method for a delay differential equation. Bit 39, No. 1, 110-115 (1998) · Zbl 0918.65054
[16] Koto, T.: Periodic orbits in the Euler methods for a class of delay-differential equations. Comput math appl 42, 1597-1608 (2001) · Zbl 1161.65367
[17] Kuang, Y.: Delay-differential equations with applications in population dynamics. (1993) · Zbl 0777.34002
[18] Kuruklis, S. A.: The asymptotic stability of xn+1-axn+bxn-k=0. J math anal appl 188, 719-731 (1994) · Zbl 0842.39004
[19] Levin, S. A.; May, R. M.: A note on difference-delay equations. Theoret popul biol 9, 178-187 (1976) · Zbl 0338.92021
[20] Lonngren, K. E.; Bai, E. W.: On a uçar prototype model. Int J eng sci 40, 1855-1857 (2002) · Zbl 1211.34089
[21] Lu, H.; He, Y.; He, Z.: A chaos generator: analyses of complex dynamics of a cell equation in delayed cellular neural networks. IEEE trans circ syst I 45, 700-702 (1998)
[22] Mackey, M. C.; Glass, L.: Oscillation and chaos in physiological systems. Science 197, 287-289 (1977)
[23] Namajunas, A.; Pyragas, K.; Tamasevicius, A.: Stabilization of an unstable steady-state in a MacKey--Glass system. Phys lett A 204, 255-262 (1995)
[24] Ogorzalek, M. J.: Chaos and complexity in nonlinear electronic circuits. (1997)
[25] Richter, H.: The generalized henon maps: examples for higher-dimensional chaos. Int J bifurcation chaos 12, No. 6, 1371-1384 (2002) · Zbl 1044.37026
[26] Rodet, X.: Model of musical instruments from Chua’s circuit with time delay. IEEE trans circ syst II 40, 696-701 (1993)
[27] Roska, T.; Chua, L. C.: Cellular neural networks with nonlinear and delay-type template elements. Int J circ theory appl 20, 469-489 (1992) · Zbl 0775.92011
[28] Strogatz, S. H.: Nonlinear dynamics and chaos: with application to physics, biology, chemistry and engineering. (1994)
[29] Natic MA. Matlab Version 5.1. : MathWorks Inc, 1997
[30] Uçar, A.: On the chaotic behavior of a prototype delayed dynamical system. Chaos, solitons and fractals 16, 187-194 (2003) · Zbl 1033.37020
[31] Uçar, A.: A prototype model for chaos studies. Int J eng sci 40, 251-258 (2002) · Zbl 1211.37041
[32] Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. (1990) · Zbl 0701.58001
[33] Peng M. Bifurcation and chaotic behavior in the Euler method for a Uçar prototype delay model, in press
[34] Peng, M.: Bifurcation and chaotic behavior in the Euler method for a kaplan--York prototype delay model. Chaos, solitons and fractals 20, No. 3, 489-496 (2004) · Zbl 1048.37030