zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mixed-dimensional, symmetric coupling of FEM and BEM. (English) Zbl 1054.74729
Summary: With the Symmetric Galerkin Boundary Element Method (SGBEM), FEM-like stiffness matrices can be produced which are suitable for coupling the Boundary Element Method (BEM) and the Finite Element Method (FEM). Here, we focus on the mixed-dimensional coupling in linear elasticity, i.e. three-dimensional BEM-domains will be coupled with two-dimensional finite shell elements. After briefly recalling the basics of the SGBEM, a direct kinematic coupling scheme will be presented, where the BE-domain is treated as a finite macro element. When assembling the stiffness matrix, the different kinematic degrees of freedom at the interface of both formulations require special attention. The accuracy of the method used is demonstrated by a numerical example.

74S05Finite element methods in solid mechanics
74S15Boundary element methods in solid mechanics
74K25Shells (solid mechanics)
Full Text: DOI
[1] Barth J. Kombination eines Integralgleichungsverfahrens mit der Methode der Finiten Elemente zur Berechnung ebener Spannungskonzentrationsprobleme. PhD Thesis. TU Munich; 1974.
[2] Zienkiewicz, O. C.; Kelly, D. W.; Bettess, P.: Marriage a la mode--the best of both worlds (finite elements and boundary integrals). Energy methods in finite element analysis, 82-107 (1997)
[3] Ganguly, S.; Layton, J. B.; Balakrishna, C.: Symmetric coupling of multi-zone curved Galerkin boundary elements with finite elements in elasticity. Int J numer meth engng 48, 633-654 (2000) · Zbl 0986.74073
[4] Beer, G.: Programming the boundary element method. (2001) · Zbl 0973.54028
[5] Bonnet, M.; Maier, G.; Polizzotto, C.: Symmetric Galerkin boundary element methods. Appl mech rev 51, No. 11, 669-704 (1998)
[6] Andrä, H.; Schnack, E.: Integration of singular integrals for the Galerkin-type boundary element method in 3D elasticity. Numer math 76, 143-165 (1997) · Zbl 0879.73078
[7] Frangi, A.: Regularization of boundary element formulations by the derivative transfer method. Singular integrals in boundary element methods, 125-164 (1998)
[8] Frangi, A.; Novati, G.; Springhetti, R.; Rovizzi, M.: 3D fracture analysis by the symmetric Galerkin BEM. Comput mech 28, No. 3/4, 220-232 (2002) · Zbl 1010.74078
[9] Haas, M.; Kuhn, G.: Implementation of an advanced symmetric Galerkin BEM-formulation for 3D-elastostatics. Proceedings of the twenty-first world conference on boundary element methods BEM 21 6 (1999) · Zbl 1052.74598
[10] Haas, M.; Kuhn, G.: A symmetric Galerkin BEM implementation for 3D elastostatic problems with an extension to curved elements. Comput mech 28, No. 3/4, 250-259 (2002) · Zbl 1062.74059
[11] Holzer SM. Das symmetrische Randelemenverfahren: Numerische Realisierung und Kopplung mit der Finite-Elemente-Methode zur elastoplastischen Strukturanalyse. PhD Thesis. Technische Universität München; 1992.
[12] Holzer, S. M.: The symmetric Galerkin BEM in elasticity: FEM/BEM coupling, integration, and adaptivity. BEM XIV, Proceedings of the 14th international conference on boundary element methods, seville, 423-437 (1992) · Zbl 0825.73922
[13] Kuhn, G.; Haas, M.: Symmetric coupling of three-dimensional BE domains with two-dimensional FE structures. Proceedings of the second European conference on computational mechanics ECCM-2001, Cracow, Poland (published on CD-ROM) (2001)
[14] Hinton, E.; Owen, D. R. J.; Krause, G.: Finite elemente programme für platten und schalen. (1990)
[15] Hughes, T. J. R.; Cohen, M.: The heterosis finite element for plate bending. Comput struct 9, 445-450 (1978) · Zbl 0394.73076
[16] Krause, G.: Marguerre--Mindlin shallow shell elements. Finite elem news, 2 (1989)
[17] Gray, L. J.; Paulino, G. H.: Symmetric Galerkin boundary integral formulation for interface and multi-zone problems. Int J numer meth engng 40, No. 16, 3085-3101 (1997) · Zbl 0905.73077
[18] Schaeffler, H. G.: MSC/NASTRAN primer: static and normal modes analysis. (1984)
[19] Mccune, R. W.; Armstrong, C. G.; Robinson, D. J.: Mixed-dimensional coupling in finite element models. Int J numer meth engng 49, 725-750 (2000) · Zbl 0967.74067