zbMATH — the first resource for mathematics

Time-reversible deterministic thermostats. (English) Zbl 1054.80009
Summary: Seven different time-reversible deterministic thermostats are considered here and applied to a simple particle-based nonequilibrium heat-flow problem. This approach is robust. Results for all these different thermostats agree rather well for system widths of ten particle diameters or more. The simplest of the thermostats is the Gauss-Nosé-Hoover thermostat, based on kinetic-energy control. Higher moments of the particle momenta can be controlled by extensions of this idea involving as many as three additional thermostat variables. Generalizations of the deterministic thermostats suited to simulating “stochastic” and “Brownian” dynamics are discussed here too.

80A20 Heat and mass transfer, heat flow (MSC2010)
82C35 Irreversible thermodynamics, including Onsager-Machlup theory
Full Text: DOI
[1] W.G. Hoover, Computational Statistical Mechanics, Elsevier, Amsterdam, 1991.
[2] Wm.G. Hoover, Time Reversibility, Computer Simulation, and Chaos, World Scientific, Singapore, 1999, 2001.
[3] D.J. Evans, G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Academic Press, New York, 1990. · Zbl 1145.82301
[4] Bulgac, A.; Dang, G.D.; Kusnezov, D., Dynamics of complex quantum systems: dissipation and kinetic equations, Physica E, 9, 429-435, (2001)
[5] Blöchl, P.E., Second-generation wave-function thermostat for ab initio molecular dynamics, Phys. rev. B, 65, 104303, (2002)
[6] Hoover, W.G.; Holian, B.L.; Posch, H.A., Comment I on “possible experiment to check the reality of a nonequilibrium temperature”, Phys. rev. E, 48, 3196-3198, (1993)
[7] Nosé, S., A unified formulation of the constant temperature molecular dynamics methods, J. chem. phys., 81, 511-519, (1984)
[8] Kusnezov, D.; Bulgac, A.; Bauer, W.; Kusnezov, D.; Bulgac, A.; Bauer, W., Canonical ensembles from chaos, Ann. phys., Ann. phys., 214, 180-218, (1992) · Zbl 0747.58039
[9] Hoover, Wm.G.; Holian, B.L., Kinetic moments method for the canonical ensemble distribution, Phys. lett. A, 211, 253-257, (1996)
[10] Martyna, C.J.; Klein, M.L.; Tuckerman, M., Nosé-hoover chains—the canonical ensemble via continuous dynamics, J. chem. phys., 97, 2635-2643, (1992)
[11] Rateitschak, K.; Klages, R., Lyapunov instability of two-dimensional many-body systems, Phys. rev. E, 65, 036209, (2002)
[12] Evans, D.J.; Holian, B.L., The nosé-hoover thermostat, J. chem. phys., 83, 4069-4074, (1985)
[13] Hoover, Wm.G., Liouville’s theorems, gibbs’ entropy, and multifractal distributions for nonequilibrium steady states, J. chem. phys., 109, 4164-4170, (1998)
[14] Holian, B.L.; Hoover, W.C.; Posch, H.A., Resolution of loschmidt’s paradox: the origin of irreversible behavior in atomistic dynamics, Phys. rev. lett., 59, 10-13, (1987)
[15] Ruelle, D., Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics, J. stat. phys., 95, 393-468, (1999) · Zbl 0934.37010
[16] Aoki, K.; Kusnezov, D., Bulk properties of anharmonic chains in strong thermal gradients: nonequilibrium φ4 theory, Phys. lett. A, 265, 250-256, (2000) · Zbl 0940.82043
[17] K. Aoki, D. Kusnezov, Lyapunov exponents, transport, and the extensivity of dimensionality loss, nlin.CD/0204015, 10 April 2002.
[18] Hoover, Wm.G.; Posch, H.A.; Aoki, K.; Kusnezov, D., Remarks on Nonhamiltonian statistical mechanics: Lyapunov exponents and phase-space dimensionality loss, Europhys. lett., 60, 337-341, (2002)
[19] Hoover, Wm.G.; Posch, H.A.; Hoover, C.G., Fluctuations and asymmetry via local Lyapunov instability in the time-reversible doubly thermostatted harmonic oscillator, J. chem. phys., 115, 5744-5750, (2001)
[20] N. Wax, Selected Papers on Noise and Stochastic Processes, Dover, New York, 1954. · Zbl 0059.11903
[21] Bulgac, A.; Kusnezov, D., Deterministic and time-reversal invariant description of Brownian motion, Phys. lett. A, 151, 122-128, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.