zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pricing contingent claims on stocks driven by Lévy processes. (English) Zbl 1054.91033
This paper studies martingale measures in a model where the asset price $S$ is given as the stochastic exponential of a Lévy process $Y$ satisfying an exponential moment condition and having jumps bounded from below; more precisely, $S = {\cal E}\left( \int \sigma(s)\,dY_s + \int b(s)\,ds \right)$ for deterministic continuous functions $\sigma,b$. The author determines the minimal equivalent martingale measure, a multiplicative variant of this, and shows that the minimal entropy martingale measure is given by a generalized Esscher transform. (This result is different from the one in H. U. Gerber and E. S. W. Shiu [Trans. Soc. Actuar. 69, 99--191 (1994)] because the latter paper considers a model with $S = \exp( \sigma Y + b t)$.) Numerical examples show that prices computed under these measures differ very substantially.

91B28Finance etc. (MSC2000)
60G35Signal detection and filtering (stochastic processes)
60J27Continuous-time Markov processes on discrete state spaces
60J75Jump processes
Full Text: DOI
[1] Aase, K. K. (1988). Contingent claims valuation when the security price is a combination of an It o process and a random point process. Stochastic Process. Appl. 28 185-220. · Zbl 0645.90009 · doi:10.1016/0304-4149(88)90096-8
[2] Bardhan I. and Chao, X. (1993). Pricing options on securities with discontinuous returns. Stochastic Process. Appl. 48 123-137. · Zbl 0791.60050 · doi:10.1016/0304-4149(93)90110-P
[3] Davis, M. H. A. (1994). A general option pricing formula. Preprint, Imperial College, London.
[4] Elliott, R. J., Hunter, W. C., Kopp, P. E. and Madan, D. B. (1995). Pricing via multiplicative price decomposition. J. Financial Engineering 4 247-262.
[5] Esscher, F. (1932). On the probability function in the collective theory of risk. Skandinavisk Aktuarietidskrift 15 175-195. · Zbl 0004.36101
[6] F öllmer, H. and Schweizer, M. (1991). Hedging of contingent claims under incomplete information. In Applied Stochastic Analy sis (M. H. A. Davis and R. J. Elliott, eds.) 389-414. Gordon and Breach, New York. · Zbl 0738.90007
[7] Gerber, H. U. and Shiu, E. S. W. (1994). Option pricing by Esscher transforms (with discussion). Trans. Soc. Actuaries 46 99-191.
[8] Harrison, J. M. and Pliska, S. R. (1981). Martingales and stochastic integrals in the theory of continuous trading. Stochastic Process. Appl. 11 215-260. · Zbl 0482.60097 · doi:10.1016/0304-4149(81)90026-0
[9] Harrison, J. M. and Pliska, S. R. (1983). A stochastic calculus model of continuous trading: Complete markets. Stochastic Process. Appl. 15 313-316. · Zbl 0511.60094 · doi:10.1016/0304-4149(83)90038-8
[10] Jacod, J. and Shiry aev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, New York.
[11] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Springer, New York. · Zbl 0734.60060
[12] Liptser, R. Sh. and Shiry ayev, A. N. (1989). Theory of Martingales. Kluwer, Dordrecht. · Zbl 0728.60048
[13] Protter, P. (1990). Stochastic Integration and Differential Equations. Springer, New York. · Zbl 0694.60047