Links between the parameter space and frequency domain methods of robust control. (English) Zbl 1054.93019

Summary: Two main approaches to robust control are the parametric and frequency domain approaches. The aim of this paper, which starts with tutorial sections on both approaches, is to compare and establish links between the parameter space method of the parametric approach and frequency domain methods, with special emphasis on the structured singular value (SSV) method. In an effort to combine the useful properties of both approaches, two SSV minimization based design techniques in controller parameter space are presented here. A simple interpretation of real SSV in plant parameter space and its further implications for analysis and design are also presented.


93B35 Sensitivity (robustness)
93C80 Frequency-response methods in control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
93D09 Robust stability
Full Text: DOI


[1] Zames, Feedback and optimal sensitivity: model reference transformations, weighted seminorms, and approximate inverses, IEEE Transactions on Automatic Control AC-26 pp 301– (1979) · Zbl 0474.93025
[2] Zames, Feedback and optimal sensitivity: model reference transformations, Multiplicative seminorms, and approximate inverses, Proceedings of the 17th Allerton Conference pp 744– (1981) · Zbl 0474.93025
[3] Zhou, Robust and Optimal Control (1996)
[4] Doyle, Analysis of Feedback Systems with Structured Uncertainties, IEE Proceedings, Part D 133 pp 45– (1982)
[5] Kharitonov, On the generalization of a stability criterion, Izvestia Akademii Nauk Kazakhskoi SSR Seriya Fizika Matematika (1) pp 33– (1978) · Zbl 0388.30005
[6] Bartlett, Root locations of an entire polytope of polynomials: it suffices to check the edges, Mathematics of Control Signals, and Systems 1 pp 61– (1988) · Zbl 0652.93048
[7] Sienel W Bünte T Design of gain scheduling controllers in parameter space 1997
[8] Siljak, Parameter space methods for robust control design: a guided tour, IEEE Transactions on Automatic Control AC-3 pp 674– (1989) · Zbl 0687.93033
[9] Ackermann, Parameter space design of robust control systems, IEEE Transactions on Automatic Control 25 pp 1058– (1980) · Zbl 0483.93041
[10] Ackermann, Robust Control (1993)
[11] Frazer, On the criteria for stability of small motions, Proceedings of the Royal Society A 124 pp 642– (1929) · JFM 55.0453.04
[12] Ackermann, Robust gamma stability analysis in a plant parameter space, Automatica 27 pp 75– (1991) · Zbl 0733.93059
[13] Bünte T Mapping of Nyquist/Popov theta-stability margins into parameter space 2000
[14] Muhler M Ackermann A Presenting multiple objectives in parameter space using color coding 2000
[15] Doyle, Feedback Control Theory (1992)
[16] Owen, Robust H disturbance minimization by duality, Systems and Control Letters 19 pp 255– (1992) · Zbl 0778.93021
[17] Owen, Duality theory of robust disturbance attenuation, Automatica 29 (3) pp 695– (1993) · Zbl 0771.93023
[18] Zames, Duality theory for MIMO robust disturbance rejection, IEEE Transactions on Automatic Control AC-38 (5) pp 743– (1993) · Zbl 0785.93034
[19] Safonov, Stability margins of diagonally perturbed multivariable feedback systems, Proceedings of the IEE 129 (6) pp 251– (1982) · Zbl 0505.93057
[20] Packard, The complex structured singular value, Automatica 29 pp 71– (1993) · Zbl 0772.93023
[21] Dailey RL H {\(\mu\)} 1990
[22] deGaston, Exact calculation of the multiloop stability margin, IEEE Transactions on Automatic Control AC-33 (1988)
[23] Keel, Robust, fragile or optimal, IEEE Transactions on Automatic Control 42 (8) pp 1098– (1997) · Zbl 0900.93075
[24] Sienel W Ackermann J Bünte T Design and analysis of robust control systems in PARADISE 1997
[25] Balas, {\(\mu\)}-Analysis and Synthesis Toolbox (1995)
[26] Chiang, Robust Control Toolbox (1992)
[27] Djaferis, Representations of controllers that achieve robust performance for systems with real parameter uncertainty, Systems and Control Letters 16 pp 329– (1991) · Zbl 0728.93035
[28] Saeki, A design method of the optimal PID controller for two disc type mixed sensitivity problem, Transactions of the Inst. of Sys. Contr. Info. Eng 7 (12) pp 520– (1994)
[29] Besson, Interactive control system design by a mixed H-parameter space method, IEEE Transactions on Automatic Control 42 pp 946– (1997) · Zbl 0885.93021
[30] Bünte T 1998
[31] Odenthal D 2000
[32] Odenthal D Blue P Mapping of H -infinity design specifications into parameter space 2000
[33] Saeki, Parameter space design method of PID controller for robust sensitivity minimization problem, Transactions of the Society of Instrument and Control Engineers 32 (12) pp 1612– (1996)
[34] Saeki, Design method of robust PID controller and CAD system, Proceedings of the 11th IFAC Symposium of System Identification 3 pp 1587– (1997)
[35] Besson, An interactive parameter space method for robust performance in mixed sensitivity problems, IEEE Transactions on Automatic Control 44 pp 1272– (1999) · Zbl 0955.93021
[36] Laughlin, Internal model control and process uncertainty-mapping uncertainty regions for SISO controller design, International Journal of Control 44 (6) pp 1675– (1986) · Zbl 0614.93019
[37] Skogestad, Some new properties of the structured singular value, IEEE Transactions on Automatic Control AC-33 pp 1151– (1988) · Zbl 0661.93027
[38] Doyle, State space solutions to standard H2 and H control problems, IEEE Transactions on Automatic Control AC-34 (8) pp 831– (1989) · Zbl 0698.93031
[39] Doyle JC 1984
[40] Fan, Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics, IEEE Transactions on Automatic Control AC-36 (1) pp 25– (1991) · Zbl 0722.93055
[41] Francis, Lecture Notes in Control and Information Sciences, in: A Course in H Control Theory (1987)
[42] Kwakernaak, Robust control and H-optimization-tutorial paper, Automatica 29 (2) pp 255– (1993) · Zbl 0790.93036
[43] Sienel W Ackermann J Kaesbauer D Bünte T Robust control goes PARADISE 1996 129 138
[44] Skogestad, Multivariable Feedback Control Analysis and Design (1996) · Zbl 0883.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.