×

On noninvertible mappings of the plane: eruptions. (English) Zbl 1055.37567

Summary: In this paper we are concerned with the dynamics of noninvertible transformations of the plane. Three examples are explored and possibly a new bifurcation, or “eruption,” is described. A fundamental role is played by the interactions of fixed points and singular curves. Other critical elements in the phase space include periodic points and an invariant line. The dynamics along the invariant line, in two of the examples, reduces to the one-dimensional Newton’s method which is conjugate to a degree two rational map. We also determine, computationally, the characteristic exponents for all of the systems. An unexpected coincidence is that the parameter range where the invariant line becomes neutrally stable, as measured by a zero Lyapunov exponent, coincides with the merging of a periodic point with a point on a singular curve.

MSC:

37E99 Low-dimensional dynamical systems
65H10 Numerical computation of solutions to systems of equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1007/BF01212280 · Zbl 0595.58028 · doi:10.1007/BF01212280
[2] Mira C., Int. J. Bifurcation Chaos 4 pp 343– (1994) · Zbl 0818.58032 · doi:10.1142/S0218127494000241
[3] Gardini L., Int. J. Bifurcation Chaos 4 pp 145– (1994) · Zbl 0870.58020 · doi:10.1142/S0218127494000125
[4] DOI: 10.1016/0167-2789(89)90072-9 · Zbl 0708.34043 · doi:10.1016/0167-2789(89)90072-9
[5] Adomaitis R., J. Nonlinear Sci. 1 pp 95– (1991) · Zbl 0798.93038 · doi:10.1007/BF01209149
[6] Fiala T., Num. Math. 50 pp 477– (1987) · Zbl 0615.65052 · doi:10.1007/BF01396665
[7] DOI: 10.1137/0714036 · Zbl 0353.65031 · doi:10.1137/0714036
[8] Blish S. L., Lect. Appl. Math. 26 pp 47– (1990)
[9] Petek P., Math. Mag. 56 pp 43– (1983) · Zbl 0505.10006 · doi:10.2307/2690268
[10] Bowen R., Commun. Math. Phys. 69 pp 1– (1979) · Zbl 0421.28016 · doi:10.1007/BF01941319
[11] DOI: 10.1016/0375-9601(94)90947-4 · Zbl 0959.37508 · doi:10.1016/0375-9601(94)90947-4
[12] Grau A. A., SIAM J. Appl. Math. 11 pp 508– (1963) · Zbl 0116.33004 · doi:10.1137/0111036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.