zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Lyapunov inequalities for discrete linear Hamiltonian systems. (English) Zbl 1055.39029
The authors study the discrete system $$\aligned x(t+1)-x(t)&=a(t)x(t+1)+b(t)u(t)\\ u(t+1)-u(t)&=-c(t)x(t+1)-a(t)u(t). \endaligned\tag1$$ They derive some Lyapunov type inequalities from (1). They use these inequalities to derive a disconjugacy criterion. Then they study the stability of (1) when the coefficients $a(t)$, $b(t)$ and $c(t)$ are periodic. They derive sufficient conditions for the instability and stability of (1). A remark is also given for the stability of the corresponding continuous time system with periodic coefficients.

MSC:
39A12Discrete version of topics in analysis
39A11Stability of difference equations (MSC2000)
93C55Discrete-time control systems
93D05Lyapunov and other classical stabilities of control systems
37J25Stability problems (finite-dimensional Hamiltonian etc. systems)
34D20Stability of ODE
WorldCat.org
Full Text: DOI
References:
[1] Krein, M. G.: Amer. math. Soc. translations, ser. 2. 120, 1-70 (1983)
[2] Yakubovich, V. A.; Starzhinsky, V. M.: Linear differential equations with periodic coefficients, part I and II. (1975)
[3] Cheng, S. S.: Lyapunov inequalities for differential and difference equations. Fasc. math. 23, 25-41 (1991) · Zbl 0753.34017
[4] Agarwal, R.; Ahlbrandt, C. D.; Bohner, M.; Peterson, A. C.: Discrete linear Hamiltonian systems: A survey. Dynam. systems appl. 8, 307-333 (1999) · Zbl 0942.39009
[5] Ahlbrandt, C. D.; Peterson, A. C.: Discrete Hamiltonian systems: difference equations, continued fractions, and Riccati equations. (1996) · Zbl 0860.39001
[6] Erbe, L.; Yan, P.: Disconjugacy for linear Hamiltonian difference systems. J. math. Anal. appl. 167, 355-367 (1992) · Zbl 0762.39003
[7] Hartman, P.: Difference equations: disconjugacy, principal solutions, Green’s functions, complete monotonicity. Trans. amer. Math. soc. 246, 1-30 (1978) · Zbl 0409.39001
[8] Atici, F. M.; Guseinov, G. Sh.: Criteria for the stability of second order difference equations with periodic coefficients. Communications in appl. Anal. 3, 503-515 (1999) · Zbl 0933.39013
[9] Atici, F. M.; Guseinov, G. Sh.; Kaymakçalan, B.: On Lyapunov inequality in stability theory for Hill’s equation on time scales. J. inequal. Appl. 5, 603-620 (2000) · Zbl 0971.39005
[10] Bohner, M.: Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions. J. math. Anal. appl. 199, 804-826 (1996) · Zbl 0855.39018
[11] Bohner, M.; Clark, S.; Ridenhour, J.: Lyapunov inequalities for time scales. J. inequal. Appl. 7, 61-77 (2002) · Zbl 1088.34503
[12] Clark, S.; Hinton, D. B.: A Liapunov inequality for linear Hamiltonian systems. Math. inequal. Appl. 1, 201-209 (1998) · Zbl 0909.34033
[13] Clark, S.; Hinton, D. B.: Discrete Lyapunov inequalities. Dynam. systems appl. 8, 369-380 (1999) · Zbl 0940.39013
[14] Guseinov, G. Sh.; Kaymakçalan, B.: On a disconjugacy criterion for second order dynamic equations on time scales. J. comput. Appl. math. 141, 187-196 (2002) · Zbl 1014.34023
[15] Halanay, A.; Rasvan, V.: Stability and boundary value problems for discrete-time linear Hamiltonian systems. Dynam. systems appl. 8, 439-459 (1999)
[16] Elaydi, S. N.: An introduction to difference equations. (1996) · Zbl 0840.39002