zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Properties of the solutions of rational matrix difference equations. (English) Zbl 1055.39033
Consider the matrix difference equation $$\multline X_t=A^*X_{t+1}A+Q+\Pi_1(X_{t+1})-[S+A^*X_{t+1}B+ \Pi_{12}(X_{t+1})]\times\\ \times[R+B^*X_{t+1}B+\Pi_2(X_{t+1})]^+[S+A^*X_{t+1} B+\Pi_{12}(X_{t+1})]^*\endmultline\tag A$$ and the corresponding algebraic equations $$\multline A^*XA-X+Q+\Pi_1(X)-[S+A^*XB+\Pi_{12}(X)]\times\\ \times [R+B^*XB+\Pi_2(X)]^+[S+A^*XB+\Pi_{12}(X)]^*= 0.\endmultline\tag B$$ Sufficient conditions for the existence and uniqueness of stabilizing solutions for (A) are established. Finally, it is shown that under certain conditions on the coefficients the solutions of (A) converge for any positive value to the stabilizing solutions of (B).

MSC:
39A20Generalized difference equations
39A70Difference operators
WorldCat.org
Full Text: DOI
References:
[1] Lancaster, P.; Rodman, L.: Algebraic Riccati equations. (1995) · Zbl 0836.15005
[2] Wonham, W. M.: On a matrix Riccati equation of stochastic control. SIAM J. Control 6, 681-697 (1968) · Zbl 0182.20803
[3] Abou-Kandil, H.; Freiling, G.; Jank, G.: On the solution of discrete-time Markovian jump linear quadratic control problems. Automatica J. IFAC 31, No. 5, 765-768 (1995) · Zbl 0822.93074
[4] Fragoso, M. D.; Costa, O. L. V.; De Souza, C. E.: A new approach to linearly perturbed Riccati equations arising in stochastic control. Appl. math. Optim. 37, No. 1, 99-126 (1998) · Zbl 0895.93042
[5] V. Dragan and T. Morozan, Systems of matrix rational differential equations arising in connection with linear stochastic systems with Markovian jumping, J. Differential Equations (to appear). · Zbl 1039.34052
[6] Damm, T.; Hinrichsen, D.: Newton’s method for a rational matrix equation occuring in stochastic control. Linear algebra appl. 332--334, 81-109 (2001)
[7] Yong, J.; Zhou, X. Y.: Stochastic controls. Hamiltonian systems and HJB equations. (1999) · Zbl 0943.93002
[8] G. Freiling and A. Hochhaus, On a class of rational matrix differential equations arising in stochastic control, Linear Algebra Appl. (to appear). · Zbl 1070.34054
[9] Zeidler, E.: Nonlinear functional analysis and its applications. I. fixed-point theorems. (1986) · Zbl 0583.47050
[10] Berman, A.; Plemmons, R. J.: Nonnegative matrices in the mathematical sciences. (1994) · Zbl 0815.15016
[11] Krasnoselskii, M. A.: Positive solutions of operator equations. (1964)
[12] Berman, A.; Ben-Israel, A.: Linear equations over cones with interior: A solvability theorem with applications to matrix theory. Linear algebra appl. 7, 139-149 (1973) · Zbl 0254.15010
[13] Schneider, H.: Positive operators and an inertia theorem. Numer. math. 7, 11-17 (1965) · Zbl 0158.28003
[14] Lancaster, P.; Tismenetsky, M.: The theory of matrices. (1985) · Zbl 0558.15001
[15] Ahlbrandt, C. D.; Peterson, A. C.: Discrete Hamiltonian systems. (1996) · Zbl 0860.39001
[16] Albert, A.: Conditions for positive and nonnegative definiteness in terms of pseudoinverses. SIAM J. Appl. math. 17, 434-440 (1969) · Zbl 0265.15002
[17] Clements, D. J.; Wimmer, H. K.: Monotonicity of the optimal cost in the discrete-time regulator problem and Schur complements. Automatica J. IFAC 37, 1779-1786 (2001) · Zbl 0990.93069
[18] Wimmer, H. K.; Pavon, M.: A comparison theorem for matrix Riccati difference equations. Systems control lett. 19, No. 3, 233-239 (1992) · Zbl 0774.49023
[19] Freiling, G.; Jank, G.: Existence and comparison theorems for algebraic Riccati equations and Riccati differential and difference equations. J. dynam. Control systems 2, No. 4, 529-547 (1996) · Zbl 0979.93091
[20] Freiling, G.; Ionescu, V.: Time-varying discrete Riccati equation: some monotonicity results. Linear algebra appl. 286, No. 1--3, 135-148 (1999) · Zbl 0939.93022
[21] De Souza, C. E.; Fragoso, M. D.: On the existence of maximal solution for generalized algebraic Riccati equations arising in stochastic control. Systems control lett. 14, No. 3, 233-239 (1990) · Zbl 0701.93106
[22] Bitmead, R. R.; Gevers, M. R.; Petersen, I. R.; Kaye, R. J.: Monotonicity and stabilizability properties of solutions of the Riccati difference equation: propositions, lemmas, theorems, fallacious conjectures, and counterexamples. Systems control lett. 5, No. 5, 309-315 (1985) · Zbl 0567.93059
[23] Rami, M. Ait; El Ghaoui, L.: LMI optimization for nonstandard Riccati equations arising in stochastic control. IEEE trans. Automat. control 41, No. 11, 1666-1671 (1996) · Zbl 0863.93087
[24] Do Val, J. B. R.; Geromel, J. C.; Costa, O. L. V.: Uncoupled Riccati iterations for the linear quadratic control problem of discrete-time Markov jump linear systems. IEEE trans. Automat. control 43, No. 12, 1727-1733 (1998) · Zbl 1056.93537
[25] El Bouhtouri, A.; Hinrichsen, D.; Pritchard, A. J.: H\infty-type control for discrete-time stochastic systems. Internat. J. Robust nonlinear control 9, No. 13, 923-948 (1999) · Zbl 0934.93022