Melas, Antonios D. The best constant for the centered Hardy-Littlewood maximal inequality. (English) Zbl 1055.42013 Ann. Math. (2) 157, No. 2, 647-688 (2003). Consider the one-dimensional Hardy-Littlewood maximal function \[ Mf(x)=\sup_{h>0}\frac{1}{2h}\int_{x-h}^{x+h}| f(t)| \,dt. \] The author proves the weak type \((1,1)\) inequality \[ | \{x:Mf(x)>\lambda\}| \leq \frac{\sqrt{61}+11}{12\lambda} \| f\| _1. \] As shown by the author in [Trans. Am. Math. Soc. 354, No. 8, 3263–3273 (2002; Zbl 1015.42015)], the constant in this inequality is optimal. Reviewer: Mehmet Burak Erdogan (Urbana) Cited in 2 ReviewsCited in 31 Documents MSC: 42B25 Maximal functions, Littlewood-Paley theory Keywords:Hardy-Littlewood maximal function Citations:Zbl 1015.42015 PDF BibTeX XML Cite \textit{A. D. Melas}, Ann. Math. (2) 157, No. 2, 647--688 (2003; Zbl 1055.42013) Full Text: DOI arXiv Online Encyclopedia of Integer Sequences: Decimal expansion of C_1 constant of Melas for the centered Hardy-Littlewood maximal inequality.