Hernández, M. A.; Rubio, M. J. Semilocal convergence of the secant method under mild convergence conditions of differentiability. (English) Zbl 1055.65069 Comput. Math. Appl. 44, No. 3-4, 277-285 (2002). Summary: We obtain a semilocal convergence result for the secant method in Banach spaces under mild convergence conditions. We consider a condition for divided differences which generalizes those usual ones, i.e., Lipschitz continuous and Hölder continuous conditions. Also, we obtain a result for uniqueness of solutions. Cited in 37 Documents MSC: 65J15 Numerical solutions to equations with nonlinear operators 47J25 Iterative procedures involving nonlinear operators 65L10 Numerical solution of boundary value problems involving ordinary differential equations 34B15 Nonlinear boundary value problems for ordinary differential equations Keywords:secant method; Recurrence relations; Boundary value problem; nonlinear operator equation; numerical examples; Banach spaces; divided difference PDF BibTeX XML Cite \textit{M. A. Hernández} and \textit{M. J. Rubio}, Comput. Math. Appl. 44, No. 3--4, 277--285 (2002; Zbl 1055.65069) Full Text: DOI OpenURL References: [1] Sergeev, A., On the method of chords, Sibirsk. mat. Ẑ., 2, 282-289, (1961) [2] Schmidt, J.W., Regula-falsi verfahren mit konsistenter steigung und majoranten prinzip, Periodica Mathematica hungarica, 5, 187-193, (1974) · Zbl 0291.65017 [3] Argyros, I.K., On the secant method, Publ. math. debrecen, 43, 3/4, 223-238, (1993) · Zbl 0796.65075 [4] Dennis, J.R., Toward a unified convergence theory for Newton-like methods, (), 425-472 [5] Rheinboldt, W.C., A unified convergence theory for a class of iterative processes, SIAM J. numer. anal., 5, 1, 42-63, (1968) · Zbl 0155.46701 [6] Potra, F.A., An application of the induction method of V. pták to the study of regula falsi, Aplikace matematiky, 26, 111-120, (1981) · Zbl 0486.65038 [7] Potra, F.A.; Pták, V., Nondiscrete induction and iterative processes, (1984), Pitman · Zbl 0549.41001 [8] Rokne, J., Newton’s method under mild differentiability conditions with error analysis, Numer. math., 18, 401-412, (1972) · Zbl 0221.65084 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.