zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A spectral collocation method to solve Helmholtz problems with boundary conditions involving mixed tangential and normal derivatives. (English) Zbl 1055.65134
Summary: The performing spectral method, developed by {\it P. Haldenwang, G. Labrasse, S. Abboudi}, and {\it M. Deville} [J. Comput. Phys. 55, 115--128 (1984; Zbl 0544.65071)], to solve multi-dimensional Helmholtz equations, associated to mixed boundary conditions with constant coefficients, is extended to boundary conditions mixing a first order normal derivative with a second order tangential derivative. The accuracy of the proposed algorithm is evaluated on two test cases for which analytical solutions exist: an academic problem and a physical configuration including an interface with shear viscosity. The procedure is also applied to the research of the Rayleigh--Bénard instability thresholds in closed cavities with thin diffusive walls.

65N35Spectral, collocation and related methods (BVP of PDE)
35J05Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation
76M22Spectral methods (fluid mechanics)
76S05Flows in porous media; filtration; seepage
Full Text: DOI
[1] Davis, S. H.: Convection in a box. J. fluid mech 30, 465-478 (1967) · Zbl 0153.29702
[2] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T.: Spectral methods in fluids dynamics. (1977) · Zbl 0717.76004
[3] Gottlieb, D.; Orszag, S. A.: Numerical analysis of spectral methods: theory and applications. (1977) · Zbl 0412.65058
[4] Haidvogel, D. B.; Zang, T.: The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials. J. comput. Phys 30, 167-180 (1979) · Zbl 0397.65077
[5] Buell, J. C.; Catton, I.: The effect of wall conduction on the stability of a fluid in a right circular cylinder heated from below. J. heat transfer 105, 255-260 (1983) · Zbl 0511.76076
[6] Haldenwang, P.; Labrosse, G.; Abboudi, S.; Deville, M.: Chebyshev 3-D spectral and 2-D pseudospectral solvers for the Helmholtz equation. J. comput. Phys 55, 115-128 (1984) · Zbl 0544.65071
[7] Platten, J. K.; Legros, J. C.: Convection in liquids. (1984) · Zbl 0545.76048
[8] Dang-Vu, H.; Delcarte, C.: An accurate solution of the Poisson equation by the Chebyshev collocation method. J. comput. Phys 104, 211-220 (1993) · Zbl 0765.65107
[9] Batoul, A.; Khallouf, H.; Labrosse, G.: Une méthode de résolution directe (pseudospectrale) du problème de Stokes 2D/3D instationnaire. Application à la cavité entrainée carrée. C. R. Acad. sci. Ser. II 319, 1455 (1994)
[10] Regnier, V. C.; Parmentier, P. M.; Lebon, G.; Platten, J. K.: Numerical simulations of interface viscosity effects on thermoconvective motion in two-dimensional rectangular boxes. Int. J. Heat mass transfer 14, 2539-2548 (1995) · Zbl 0925.76918
[11] C. Delcarte, G. Labrosse, S. Nguyen, Non-homogeneous boundary conditions in collocation spectral method, in: Proceedings of the ECCOMAS CFD Cnference, Swansea, UK, September 4--7, 2001
[12] Leriche, E.; Labrosse, G.: High-order direct Stokes solvers with or without temporal splitting: numerical investigations of their comparative properties. SIAM J. Sci. comput 22, No. N4, 1386-1410 (2001) · Zbl 0972.35087
[13] Gatignol, R.; Prud’homme, R.: Mechanical and thermomecanical modelling of fluid interfaces. Series on advances in mathematics for applied sciences 58 (2001)