Chen, Wu-Hua; Guan, Zhi-Hong; Lu, Xiaomei Delay-dependent guaranteed cost control for uncertain discrete-time systems with both state and input delays. (English) Zbl 1055.93054 J. Franklin Inst. 341, No. 5, 419-430 (2004). Summary: This paper considers the guaranteed cost control problem for a class of uncertain linear discrete-time systems with both state and input delays. By representing the time-delay system in the descriptor system form and using a recent result on bounding of cross products of vectors, we obtain new delay-dependent sufficient conditions for the existence of the guaranteed cost controller in terms of linear matrix inequalities. Numerical examples are presented which show that the proposed method can even produce a lower guaranteed cost than the delay-independent methods. Cited in 31 Documents MSC: 93C55 Discrete-time control/observation systems 15A39 Linear inequalities of matrices Keywords:Guaranteed cost control; Discrete-time systems; Delay-dependent criterion; Time-delay systems; Linear matrix inequality PDF BibTeX XML Cite \textit{W.-H. Chen} et al., J. Franklin Inst. 341, No. 5, 419--430 (2004; Zbl 1055.93054) Full Text: DOI References: [1] Jeung, E. T.; Oh, D. C.; Kim, J. H.; Park, H. B., Robust controller design for uncertain systems with time delaysLMI approach, Automatica, 32, 1229-1231 (1996) · Zbl 0854.93057 [2] Mahmoud, M. S.; Al-Muthairi, N. F., Quadratic stabilization of continuous time systems with state-delay and norm-bounded time-varying uncertainties, IEEE Trans. Autom. Control, 39, 2135-2139 (1994) · Zbl 0925.93585 [3] Phoojaruenchanachai, S.; Furuta, K., Memoryless stabilization of uncertain linear systems including time-varying state delays, IEEE Trans. Autom. Control, 37, 1022-1026 (1992) · Zbl 0767.93073 [4] Fridman, E.; Shaked, U., A descriptor system approach to \(H_∞\) control of linear time-delay systems, IEEE Trans. Autom. Control, 47, 253-270 (2002) · Zbl 1364.93209 [5] Fridman, E.; Shaked, U., An improved stabilization method for linear time-delay systems, IEEE Trans. Autom. Control, 47, 1931-1937 (2002) · Zbl 1364.93564 [6] Moon, Y. S.; Park, P. G.; Kwon, W. H.; Lee, Y. S., Delay-dependent robust stabilization of uncertain state-delayed systems, Int. J. Control, 74, 1447-1455 (2001) · Zbl 1023.93055 [7] Moheimani, S. O.R; Petersen, I. R., Optimal quadratic guaranteed cost control of a class of uncertain time-delay systems, IEE Proc. Control Theory Appl., 144, 183-188 (1997) · Zbl 0873.49024 [8] Esfahani, S. H.; Moheimani, S. O.R, LMI approach to suboptimal guaranteed cost control for uncertain time-delay systems, IEE Proc. Control Theory Appl., 145, 491-498 (1998) [9] Yu, L.; Chu, J., An LMI approach to guaranteed cost control of linear uncertain time-delay systems, Automatica, 35, 1155-1159 (1999) · Zbl 1041.93530 [10] Yu, L.; Gao, F., Optimal guaranteed cost control of discrete-time uncertain systems with both state and input delays, J. Franklin Inst., 338, 101-110 (2001) · Zbl 0998.93512 [11] Guan, X.; Lin, Z.; Duan, G., Robust guaranteed cost control for discrete-time uncertain systems with delay, IEE Proc. Control Theory Appl., 146, 6, 598-602 (1999) [13] Chen, W.-H; Guan, Z.-H; Lu, X., Delay-dependent guaranteed cost control for discrete-time uncertain system with delay, IEE Proc. Control Theory Appl., 150, 412-416 (2003) [14] Chen, W.-H; Xu, J.-X; Guan, Z.-H, Guaranteed cost control for uncertain Markovian jump systems with mode-dependent delays, IEEE Trans. Autom. Control, 48, 2270-2277 (2003) · Zbl 1364.93369 [15] Wang, Y.; Xie, L.; de Souza, C. E., Robust control for a class of uncertain nonlinear systems, System Control Lett., 19, 139-149 (1992) · Zbl 0765.93015 [16] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in Systems and Control Theory, Studies in Applied Mathematics, Vol. 15 (1994), SIAM: SIAM Philadelphia, PA [17] Chen, W.-H; Guan, Z.-H; Lu, X., Delay-dependent output feedback guaranteed cost control for uncertain time-delay systems, Automatica, 40, 1263-1268 (2004) · Zbl 1056.93040 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.