×

Exactly controlling the non-supercompact strongly compact cardinals. (English) Zbl 1056.03030

Summary: We summarize the known methods of producing a non-supercompact strongly compact cardinal and describe some new variants. Our Main Theorem shows how to apply these methods to many cardinals simultaneously and exactly control which cardinals are supercompact and which are only strongly compact in a forcing extension. Depending upon the method, the surviving non-supercompact strongly compact cardinals can be strong cardinals, have trivial Mitchell rank or even contain a club disjoint from the set of measurable cardinals. These results improve and unify Theorems 1 and 2 of Ann. Pure Appl. Logic 89, 101–115 (1997; Zbl 0890.03026), due to the first author.

MSC:

03E55 Large cardinals
03E35 Consistency and independence results

Citations:

Zbl 0890.03026

References:

[1] Y. Abe Some results concerning strongly compact cardinals , Journal of Symbolic Logic, vol. 50 (1985), pp. 874–880. JSTOR: · Zbl 0591.03026 · doi:10.2307/2273977
[2] A. Apter On the least strongly compact cardinal , Israel Journal of Mathematics , vol. 35 (1980), pp. 225–233. · Zbl 0457.03052 · doi:10.1007/BF02761194
[3] A. Apter and J. Cummings Identity crises and strong compactness , Journal of Symbolic Logic, vol. 65 (2000), pp. 1895–1910. JSTOR: · Zbl 0974.03044 · doi:10.2307/2695085
[4] A. Apter and M. Gitik The least measurable can be strongly compact and indestructible , Journal of Symbolic Logic, vol. 63 (1998), pp. 1404–1412. JSTOR: · Zbl 0926.03067 · doi:10.2307/2586658
[5] A. Apter and J. D. Hamkins Indestructibility and the level-by-level agreement between strong compactness and supercompactness , Journal of Symbolic Logic, vol. 67 (2002), pp. 820–840. · Zbl 1010.03043 · doi:10.2178/jsl/1190150111
[6] A. Apter and S. Shelah On the strong equality between supercompactness and strong compactness , Transactions of the American Mathematical Society , vol. 349 (1997), pp. 103–128. · Zbl 0864.03036 · doi:10.1090/S0002-9947-97-01531-6
[7] J. Burgess Forcing , Handbook of Mathematical Logic (J. Barwise, editor), North-Holland, Amsterdam,1977, pp. 403–452.
[8] J. Cummings A model in which GCH holds at successors but fails at limits, Transactions of the American Mathematical Society , vol. 329 (1992), pp. 1–39. · Zbl 0758.03022 · doi:10.2307/2154075
[9] M. Foreman More saturated ideals , Cabal Seminar 79-81 , Lecture Notes in Mathematics, vol. 1019, Springer-Verlag, Berlin and New York,1983, pp. 1–27. · Zbl 0536.03032
[10] M. Gitik Changing cofinalities and the nonstationary ideal , Israel Journal of Mathematics , vol. 56 (1986), pp. 280–314. · Zbl 0649.03040 · doi:10.1007/BF02782938
[11] J. D. Hamkins Destruction or preservation as you like it , Annals of Pure and Applied Logic , vol. 91 (1998), pp. 191–229. · Zbl 0949.03047 · doi:10.1016/S0168-0072(97)00044-4
[12] J. D. Hamkins and W. H. Woodin Small forcing creates neither strong nor Woodin cardinals , Proceedings of the American Mathematical Society , vol. 128 (2000), pp. 3025–3029. · Zbl 0959.03040 · doi:10.1090/S0002-9939-00-05347-8
[13] A. Kanamori The Higher Infinite , Springer-Verlag, Berlin and New York,1994. · Zbl 0813.03034
[14] Y. Kimchi and M. Magidor The independence between the concepts of compactness and supercompactness , circulated manuscript.
[15] R. Laver Making the supercompactness of \(\kappa\) indestructible under \(\kappa\)-directed closed forcing, Israel Journal of Mathematics , vol. 29 (1978), pp. 385–388. · Zbl 0381.03039 · doi:10.1007/BF02761175
[16] A. Lévy and R. Solovay Measurable cardinals and the continuum hypothesis , Israel Journal of Mathematics , vol. 5 (1967), pp. 234–248. · Zbl 0289.02044 · doi:10.1007/BF02771612
[17] M. Magidor How large is the first strongly compact cardinal? , Annals of Mathematical Logic , vol. 10 (1976), pp. 33–57. · Zbl 0342.02051
[18] T. Menas On strong compactness and supercompactness , Annals of Mathematical Logic , vol. 7 (1974), pp. 327–359. · Zbl 0299.02084 · doi:10.1016/0003-4843(75)90009-1
[19] R. Solovay Strongly compact cardinals and the GCH , Proceedings of the Tarski Symposium , Proceedings of Symposia in Pure Mathematics, American Mathematical Society,1974, pp. 365–372. · Zbl 0317.02083
[20] R. Solovay, W. Reinhardt, and A. Kanamori Strong axioms of infinity and elementary embeddings , Annals of Mathematical Logic , vol. 13 (1978), pp. 73–116. · Zbl 0376.02055 · doi:10.1016/0003-4843(78)90031-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.