zbMATH — the first resource for mathematics

Infinitesimal Hecke algebras. (English. Abridged French version) Zbl 1056.20004
Summary: We define infinitesimal analogues of the Iwahori-Hecke algebras associated with finite Coxeter groups. These are reductive Lie algebras for which we announce several decomposition results. These decompositions yield irreducibility results for representations of the corresponding (pure) generalized braid groups deduced from Hecke algebra representations through tensor constructions.

20C08 Hecke algebras and their representations
20F55 Reflection and Coxeter groups (group-theoretic aspects)
17B20 Simple, semisimple, reductive (super)algebras
Full Text: DOI
[1] Brieskorn, E., Die fundamentalgruppe des raumes der regulären orbits einer endlichen komplexen spiegelungsgruppe, Invent. math., 12, 57-61, (1971) · Zbl 0204.56502
[2] Broué, M.; Malle, G.; Rouquier, R., Complex reflection groups, braid groups, Hecke algebras, J. reine angew. math., 500, 127-190, (1998) · Zbl 0921.20046
[3] Crisp, J.; Paris, L., The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group, Invent. math., 145, 19-36, (2001) · Zbl 1002.20021
[4] Curtis, C.W.; Iwahori, N.; Kilmoyer, R., Hecke algebras and characters of parabolic type of finite groups with (B,N)-pairs, Publ. math. inst. hautes études sci., 40, 81-116, (1971) · Zbl 0254.20004
[5] Jucys, A.-A.A., Symmetric polynomials and the center of the symmetric group ring, Rep. math. phys., 5, 107-112, (1974) · Zbl 0288.20014
[6] I. Marin, Éléments de Jucys-Murphy généralisés, submitted for publication
[7] I. Marin, Irréductibilité générique des produits tensoriels de monodromies, Bull. Soc. Math. France, in press
[8] I. Marin, Quotients infinitésimaux du groupe de tresses, Ann. Inst. Fourier, in press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.