zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of positive solutions for three-point boundary value problems at resonance. (English) Zbl 1056.34019
The authors prove the existence of a positive solution for a second-order ordinary differential equation with a three-point boundary condition, whose nonlinearity is assumed to have at most linear growth. The proof uses the fixed-point index theory.

MSC:
34B15Nonlinear boundary value problems for ODE
WorldCat.org
Full Text: DOI
References:
[1] Bai, C. Z.; Fang, J. X.: Existence of multiple positive solutions for nonlinear m-point boundary value problems. Appl. math. Comput. 140, 297-305 (2003) · Zbl 1033.34019
[2] Bitsadze, A. V.; Samarskii, A. A.: On some simple generalizations of linear elliptic boundary value problems. Sov. math. Dokl. 10, 398-400 (1969) · Zbl 0187.35501
[3] Bitsadze, A. V.: On the theory of nonlocal boundary value problems. Sov. math. Dokl. 30, 8-10 (1984) · Zbl 0586.30036
[4] Bitsadze, A. V.: On a class of conditionally solvable nonlocal boundary value problems for harmonic functions. Sov. math. Dokl. 31, 91-94 (1985) · Zbl 0607.30039
[5] Cremins, C. T.: A fixed-point index and existence theorems for semilinear equations in cones. Nonlinear anal. 46, 789-806 (2001) · Zbl 1015.47041
[6] Feng, W.; Webb, R. L.: Solvability of m-point boundary value problems with nonlinear growth. J. math. Anal. appl. 212, 467-480 (1997) · Zbl 0883.34020
[7] Fitzpatrick, P. M.; Petryshyn, W. V.: On the nonlinear eigenvalue problem $T(u)={\lambda}C(u)$, involving noncompact abstract and differential operators. Boll. un. Mat. ital. B 15, 80-107 (1978) · Zbl 0386.47033
[8] Gupta, C. P.; Ntouyas, S. K.; Tsamatos, P. Ch: On an m-point boundary value problem for second order ordinary differential equations. Nonlinear anal. 23, 1427-1436 (1994) · Zbl 0815.34012
[9] Gupta, C. P.; Ntouyas, S. K.; Tsamatos, P. Ch: Solvability of an m-point boundary value problem for second order ordinary differential equations. J. math. Anal. appl. 189, 575-584 (1995) · Zbl 0819.34012
[10] Gupta, C. P.; Ntouyas, S. K.; Tsamatos, P. Ch: Existence results for multi-point boundary value problems for second-order ordinary differential equations. Bull. Greek math. Soc. 43, 105-123 (2000) · Zbl 1185.34023
[11] Gupta, C. P.: A generalized multi-point boundary value problem for second order ordinary differential equations. Appl. math. Comput. 89, 133-146 (1998) · Zbl 0910.34032
[12] Il’in, V. A.; Moiseev, E. I.: Nonlocal boundary value problem of the first kind for a Sturm--Liouville operator in its differential and finite difference aspects. Differential equations 23, 803-810 (1987)
[13] Il’in, V. A.; Moiseev, E. I.: Nonlocal boundary value problem of the second kind for a Sturm--Liouville operator. Differential equations 23, 979-987 (1987) · Zbl 0668.34024
[14] Ma, R. Y.; Castaneda, N.: Existence of solutions of nonlinear m-point boundary-value problems. J. math. Anal. appl. 256, 556-567 (2001) · Zbl 0988.34009
[15] Petryshyn, W. V.: Using degree theory for densely defined A-proper maps in the solvability of semilinear equations with unbounded and noninvertible linear part. Nonlinear anal. 4, No. 2, 259-281 (1980) · Zbl 0444.47046
[16] Przeradzki, B.; Stańczy, R.: Solvability of a multi-point boundary value problem at resonance. J. math. Anal. appl. 264, 253-261 (2001) · Zbl 1043.34016