Rus, Ioan A. Iterates of Bernstein operators, via contraction principle. (English) Zbl 1056.41004 J. Math. Anal. Appl. 292, No. 1, 259-261 (2004). Let \((B_n^m)_{m\in\mathbb N}\) denote the sequence of the iterates of the classical Bernstein operators \(B_n\). The author gives a simple proof of the following theorem, proved earlier, by R. P. Kelisky and T. J. Rivlin [Pac. J. Math. 21, 511–520 (1967; Zbl 0177.31302)]. Theorem. If \(n\in N^*\) is fixed, then, for all \(f\in C[0,1]\), \(\lim_{m\to\infty} B_n^m(f) (x)= f(0)+[f(1)-f(0)]x\), \(x \in[0,1]\). Reviewer: S. M. Mazhar (Kuwait) Cited in 1 ReviewCited in 26 Documents MSC: 41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities) 41A36 Approximation by positive operators Keywords:Bernstein operators; contraction principle; Picard operator Citations:Zbl 0177.31302 PDF BibTeX XML Cite \textit{I. A. Rus}, J. Math. Anal. Appl. 292, No. 1, 259--261 (2004; Zbl 1056.41004) Full Text: DOI References: [1] Adell, J. A.; Badia, F. G.; de la Cal, J., On the iterates on some Bernstein-type operators, J. Math. Anal. Appl., 209, 529-541 (1997) · Zbl 0872.41009 [2] Agratini, O., Aproximare Prin Operatori Liniari (2000), Presa Universitară Clujeană: Presa Universitară Clujeană Cluj-Napoca [3] Karlin, S.; Ziegler, Z., Iteration of positive approximation operators, J. Approx. Theory, 3, 310-339 (1970) · Zbl 0199.44702 [4] Kelisky, R. P.; Rivlin, T. J., Iterates of Bernstein polynomials, Pacific J. Math., 21, 511-520 (1967) · Zbl 0177.31302 [5] Rus, I. A., Generalized Contractions and Applications (2001), Cluj Univ. Press: Cluj Univ. Press Cluj-Napoca · Zbl 0968.54029 [6] Zeidler, E., Nonlinear Functional Analysis and Its Applications, I (1993), Springer-Verlag: Springer-Verlag Berlin This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.