×

Application of accretive operators theory to evolutive combined conduction, convection and radiation. (English) Zbl 1056.45008

The authors prove the existence of a unique solution of a coupled system of integrodifferential equations time dependent semilinear describing the combined heat conduction, convection and radiation in a gas. The proof is a straightforward application of Crandall-Liggett theory and depends on the m-accretiveness of a linear operator.

MSC:

45K05 Integro-partial differential equations
82C70 Transport processes in time-dependent statistical mechanics
85A25 Radiative transfer in astronomy and astrophysics
45G15 Systems of nonlinear integral equations
47H06 Nonlinear accretive operators, dissipative operators, etc.
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Bénilan, Ph., Crandall, M. G. and Pazy, A.: Nonlinear Evolution Governed by Accretive Operators. Springer, to appear.
[2] Betta, M. F., Del Vecchio, T. and Posteraro, M. R.: Existence and regularity results for nonlinear degenerate elliptic equations with measure data. Ricerche Mat. 47 (1998), no. 2, 277-295. M. M. Porzio and Ó. López-Pouso · Zbl 0958.35058
[3] Betta, M. F., Mercaldo, A., Murat, F. and Porzio, M. M.: Exis- tence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum. C. R. Math. Acad. Sci. Paris 334 (2002), no. 9, 757-762. · Zbl 1016.35026 · doi:10.1016/S1631-073X(02)02338-5
[4] Betta, M. F., Mercaldo, A., Murat, F. and Porzio, M. M.: Exis- tence of renormalized solutions to nonlinear elliptic equations with lower- order terms and right-hand side a measure. J. Math. Pures Appl. (9) 82 (2003), no. 1, 90-124. · Zbl 1165.35365
[5] Betta, M. F., Mercaldo, A., Murat, F. and Porzio, M. M.: Unique- ness of renormalized solutions to nonlinear elliptic equations with a lower order term and right hand side in L1(\Omega ). ESAIM Control Optim. Calc. Var. 8 (2002) (Special volume: A tribute to Jacques-Louis Lions), 239-272. · Zbl 1092.35032 · doi:10.1051/cocv:2002051
[6] Candel, S.: Mécanique des fluides. Dunod, Paris, 1990. · Zbl 0869.76001
[7] Crandall, M. G.: Nonlinear semigroups and evolution governed by ac- cretive operators (1983). In Nonlinear Functional Analysis and Its Applica- tions, 305-337, (F.E. Browder, ed.). Proc. Sympos. Pure Math. 45 (part 1). American Mathematical Society, Providence, RI, 1986. · Zbl 0637.47039
[8] Del Vecchio, T.: Nonlinear elliptic equations with measure data. Poten- tial Anal. 4 (1995), no. 2, 185-203. · Zbl 0815.35023 · doi:10.1007/BF01275590
[9] Del Vecchio, T. and Posteraro, M. R.: Existence and regularity re- sults for nonlinear elliptic equations with measure data. Adv. Differential Equations 1 (1996), no. 5, 899-917. · Zbl 0856.35044
[10] Golse, F. and Perthame, B.: Generalized solutions of the radiative transfer equations in a singular case. Comm. Math. Phys. 106 (1986), no. 2, 211-239. · Zbl 0614.35084 · doi:10.1007/BF01454973
[11] Kelley, C. T.: Existence and uniqueness of solutions of nonlinear systems of conductive-radiative heat transfer equations. Transport Theory Statist. Phys. 25 (1996), no. 2, 249-260. · Zbl 0857.45009 · doi:10.1080/00411459608204839
[12] Laitinen, M. T. and Tiihonen, T.: Integro-differential equation mod- elling heat transfer in conducting, radiating and semitransparent materials. Math. Methods Appl. Sci. 21 (1998), no. 5, 375-392. · Zbl 0958.80003 · doi:10.1002/(SICI)1099-1476(19980325)21:5<375::AID-MMA953>3.0.CO;2-U
[13] López-Pouso, Ó.: Espacios de distribuciones, operadores acretivos y radiación térmica. Ph. D. Thesis. Publicaciones del Departamento de Matemática Aplicada 20, Universidad de Santiago de Compostela, 1999.
[14] López-Pouso, Ó.: Trace theorem and existence in radiation. Adv. Math. Sci. Appl. 10 (2000), no. 2, 757-773. · Zbl 1023.85002
[15] López-Pouso, Ó. and Porzio, M. M.: Linear elliptic problems with mixed boundary conditions related to radiation heat transfer. Math. Models Methods Appl. Sci. 12 (2002), no. 4, 541-565. · Zbl 1290.35060 · doi:10.1142/S0218202502001787
[16] Mercier, B.: Application of accretive operators theory to the radiative transfer equations. SIAM J. Math. Anal. 18 (1987), no. 2, 393-408. 275 · Zbl 0654.47036 · doi:10.1137/0518030
[17] Modest, M. F.: Radiative Heat Transfer. McGraw-Hill Inc., New York, 1993.
[18] Showalter, R. E.: Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs 49. American Mathematical Society, Providence, RI, 1997. · Zbl 0870.35004
[19] Siegel, R.: Transient effects of radiative transfer in semitransparent ma- terials. Internat. J. Engrg. Sci. 36 (1998), 1701-1739.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.