[1] |
Facchinei, F.; Pang, J. S.: Finite-dimensional variational inequality and complementarity problems, vols. 1 and 2. (2003) · Zbl 1062.90002 |

[2] |
Harker, P.; Pang, J. S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. program. 48, 161-220 (1990) · Zbl 0734.90098 |

[3] |
Pang, J. S.: Inexact Newton methods for the nonlinear complementarity problems. Math. program. 36, 54-71 (1986) · Zbl 0613.90097 |

[4] |
Auslender, A.: Optimisation: méthodes numérique. (1976) |

[5] |
Fukushima, M.: An outer approximation algorithm for solving general convex programs. Oper. res. 31, 101-113 (1983) · Zbl 0495.90066 |

[6] |
Fukushima, M.: A relaxed projection method for variational inequalities. Math. program. 35, 58-70 (1986) · Zbl 0598.49024 |

[7] |
Kinderlehrer, D.; Stampacchia, G.: An introduction to variational inequalities and their applications. (1980) · Zbl 0457.35001 |

[8] |
Byrne, C.: Iterative oblique projection onto convex sets and the split feasibilities problem. Inverse problems 18, 441-453 (2002) · Zbl 0996.65048 |

[9] |
Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse problems 20, 103-120 (2004) · Zbl 1051.65067 |

[10] |
Byrne, C.: Bregman -- Legendre multidistances projection algorithm for convex feasibility and optimization. Inherently parallel algorithms in feasility and optimization and their applications, 87-100 (2001) · Zbl 0990.90094 |

[11] |
Censor, Y.; Elfving, T.: A multiprojection algorithm using Bregman projections in a production space. Numer. algorithms 8, 221-239 (1994) · Zbl 0828.65065 |

[12] |
Censor, Y.; Iusem, A.; Zenios, S.: An interior point method with Bregman functions for the variational inequality problem with paramonotone operators. Math. program. 81, 370-400 (1998) · Zbl 0919.90123 |

[13] |
Dolidze, Z.: Solution of variational inequalities associated with a class of monotone maps. Ekonomik i matem. Metody 18, 925-927 (1982) |

[14] |
He, B. S.: Inexact implicit methods for monotone general variational inequalities. Math. progam. Ser. A 86, 199-217 (1999) · Zbl 0979.49006 |

[15] |
Solodov, M.; Tseng, P.: Modified projection-type methods for monotone variational inequalities. SIAM J. Control optim. 34, 1814-1830 (1996) · Zbl 0866.49018 |

[16] |
Sun, D.: A class of iterative methods for solving nonlinear projection equations. J. optim. Theory appl., 123-140 (1996) · Zbl 0871.90091 |

[17] |
Tseng, P.: Alternating projection-proximal methods for variational inequalities. SIAM J. Optim. 7, 951-965 (1997) · Zbl 0914.90218 |

[18] |
Xiu, N.; Zhang, J.: Some recent advances in projection-type methods for variational inequalities. J. comput. Appl. math. 152, 559-587 (2003) · Zbl 1018.65083 |

[19] |
Noor, M.; Wang, Y.; Xiu, N.: Some projection methods for variational inequalities. Appl. math. Comput. 137, 423-435 (2003) · Zbl 1031.65078 |

[20] |
Marcotte, P.; Wu, J.: On the convergence of projection methods. Applications to the decomposition of affine variational inequalities. J. optim. Theory appl. 85, 347-362 (1995) · Zbl 0831.90104 |

[21] |
Golshtein, E.; Tretyakov, N.: Modified Lagrangians and monotone maps in optimization. (1996) · Zbl 0848.49001 |

[22] |
Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem. Inverse problems 20, 1261-1266 (2004) · Zbl 1066.65047 |