Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime. (English) Zbl 1056.62028

From the paper: An autoregressive process with Markov regime, or Markov-switching autoregression, is a bivariate process \(\{(X_k,Y_k)\}\), where \(\{X_k\}\) is a Markov chain on a state space \({\mathcal X}\) and, conditional on \(\{X_k\}\), \(\{Y_k\}\) is an inhomogeneous \(s\)-order Markov chain on a state space \({\mathcal Y}\) such that the conditional distribution of \(Y_n\) only depends on \(X_n\) and lagged \(Y\)’s. The process \(\{X_k\}\), usually referred to as the regime, is not observable and inference has to be carried out in terms of the observable process \(\{Y_k\}\).
We consider the asymptotic properties of the maximum likelihood estimator in a possibly nonstationary process of this kind for which the hidden state space is compact but not necessarily finite. Consistency and asymptotic normality are shown to follow from uniform exponential forgetting of the initial distribution for the hidden Markov chain conditional on the observations.


62F12 Asymptotic properties of parametric estimators
62M05 Markov processes: estimation; hidden Markov models
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M09 Non-Markovian processes: estimation
Full Text: DOI arXiv


[1] Bakry, D., Milhaud, X. and Vandekerkhove, P. (1997). Statistics of hidden Markov chains with finite state space. The nonstationary case. C. R. Acad. Sci. Paris Sér. I Math. 325 203–206. (In French.) · Zbl 0891.62058
[2] Bar-Shalom, Y. and Li, X.-R. (1993). Estimation and Tracking. Principles, Techniques, and Software . Artech House, Boston. · Zbl 0853.62076
[3] Baum, L. and Petrie, T. (1966). Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Statist. 37 1554–1563. · Zbl 0144.40902
[4] Bickel, P. and Ritov, Y. (1996). Inference in hidden Markov models. I. Local asymptotic normality in the stationary case. Bernoulli 2 199–228. · Zbl 1066.62535
[5] Bickel, P., Ritov, Y. and Rydén, T. (1998). Asymptotic normality of the maximum likelihood estimator for general hidden Markov models. Ann. Statist. 26 1614–1635. · Zbl 0932.62097
[6] Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 265–285. · Zbl 0917.62058
[7] Booth, J. G., Hobert, J. P. and Jank, W. (2001). A survey of Monte Carlo algorithms for maximizing the likelihood of a two-stage hierarchical model. Stat. Modelling 1 333–349. · Zbl 1102.62019
[8] Cappé, O. (2001). Recursive computation of smoothed functionals of hidden Markovian processes using a particle approximation. Monte Carlo Methods Appl. 7 81–92. · Zbl 0982.65010
[9] Chan, K. and Ledolter, J. (1995). Monte Carlo EM estimation for time series models involving counts. J. Amer. Statist. Assoc. 90 242–252. JSTOR: · Zbl 0819.62069
[10] Chib, S., Nardari, F. and Shephard, N. (2002). Markov chain Monte Carlo methods for stochastic volatility models. J. Econometrics 108 281–316. · Zbl 1099.62539
[11] Churchill, G. A. (1989). Stochastic models for heterogeneous DNA sequences. Bull. Math. Biol. 51 79–94. · Zbl 0662.92012
[12] de Jong, P. and Shephard, N. (1995). The simulation smoother for time series models. Biometrika 82 339–350. JSTOR: · Zbl 0823.62072
[13] Del Moral, P. and Guionnet, A. (2001). On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. H. Poincaré Probab. Statist. 37 155–194. · Zbl 0990.60005
[14] Del Moral, P. and Miclo, L. (2000). Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to non-linear filtering. Séminaire de Probabilités XXXIV . Lecture Notes in Math. 1729 1–145. Springer, Berlin. · Zbl 0963.60040
[15] Del Moral, P. and Miclo, L. (2001). Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups. Technical report, Univ. Toulouse III. · Zbl 1040.81009
[16] Douc, R. and Matias, C. (2001). Asymptotics of the maximum likelihood estimator for general hidden Markov models. Bernoulli 7 381–420. · Zbl 0987.62018
[17] Doucet, A., de Freitas, N. and Gordon, N. (2001). An introduction to sequential Monte Carlo methods. In Sequential Monte Carlo Methods in Practice (A. Doucet, N. de Freitas and N. Gordon, eds.) 3–14. Springer, New York. · Zbl 1056.93576
[18] Doucet, A., Logothetis, A. and Krishnamurthy, V. (2000). Stochastic sampling algorithms for state estimation of jump Markov linear systems. IEEE Trans. Automat. Control 45 188–202. · Zbl 0980.93076
[19] Durrett, R. (1996). Probability : Theory and Examples , 2nd ed. Duxbury, Belmont, CA. · Zbl 1202.60001
[20] Fort, G. and Moulines, E. (2003). Convergence of the Monte Carlo expectation maximization for curved exponential families. Ann. Statist. 31 1220–1259. · Zbl 1043.62015
[21] Francq, C. and Roussignol, M. (1998). Ergodicity of autoregressive processes with Markov-switching and consistency of the maximum-likelihood estimator. Statistics 32 151–173. · Zbl 0954.62104
[22] Francq, C. and Zakoian, J. M. (2001). Stationarity of multivariate Markov-switching ARMA models. J. Econometrics 102 339–364. · Zbl 0998.62076
[23] Fredkin, D. R. and Rice, J. A. (1987). Correlation functions of a function of a finite-state Markov process with application to channel kinetics. Math. Biosci. 87 161–172. · Zbl 0632.92003
[24] Geyer, G. J. (1994). On the convergence of Monte Carlo maximum likelihood computations. J. Roy. Statist. Soc. Ser. B 56 261–274. JSTOR: · Zbl 0784.62019
[25] Geyer, G. J. and Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood for dependent data (with discussion). J. Roy. Statist. Soc. Ser. B 54 657–699. JSTOR:
[26] Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57 357–384. JSTOR: · Zbl 0685.62092
[27] Hamilton, J. D. (1990). Analysis of time series subject to changes in regime. J. Econometrics 45 39–70. · Zbl 0723.62050
[28] Holst, U., Lindgren, G., Holst, J. and Thuvesholmen, M. (1994). Recursive estimation in switching autoregressions with Markov regime. J. Time Series Anal. 15 489–506. · Zbl 0807.62061
[29] Hürzeler, M. and Künsch, H. R. (2001). Approximating and maximising the likelihood for a general state space model. In Sequential Monte Carlo Methods in Practice (A. Doucet, N. de Freitas and N. Gordon, eds.) 159–175. Springer, New York. · Zbl 1056.93580
[30] Jensen, J. L. and Petersen, N. V. (1999). Asymptotic normality of the maximum likelihood estimator in state space models. Ann. Statist. 27 514–535. · Zbl 0952.62023
[31] Juang, B.-H. and Rabiner, L. R. (1991). Hidden Markov models for speech recognition. Technometrics 33 251–272. JSTOR: · Zbl 0762.62036
[32] Kim, C. and Nelson, C. (1999). State-Space Models with Regime Switching : Classical and Gibbs-Sampling Approaches with Applications . MIT Press.
[33] Krishnamurthy, V. and Rydén, T. (1998). Consistent estimation of linear and non-linear autoregressive models with Markov regime. J. Time Series Anal. 19 291–307. · Zbl 0906.62088
[34] Krolzig, H.-M. (1997). Markov-Switching Vector Autoregressions. Modelling, Statistical Inference, and Application to Business Cycle Analysis . Lecture Notes in Econom. and Math. Systems 454 . Springer, Berlin. · Zbl 0879.62107
[35] Künsch, H. R. (2001). State space and hidden Markov models. In Complex Stochastic Systems (O. E. Barndorff-Nielsen, D. R. Cox and C. Klüppelberg, eds.) 109–173. Chapman and Hall/CRC Press, Boca Raton, FL. · Zbl 1002.62072
[36] Le Gland, F. and Mevel, L. (2000). Exponential forgetting and geometric ergodicity in hidden Markov models. Math. Control Signals Systems 13 63–93. · Zbl 0941.93053
[37] Leroux, B. G. (1992). Maximum likelihood estimation for hidden Markov models. Stochastic Process. Appl. 40 127–143. · Zbl 0738.62081
[38] Lindvall, T. (1992). Lectures on the Coupling Method . Wiley, New York. · Zbl 0850.60019
[39] Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. J. Roy. Statist. Soc. Ser. B 44 226–233. JSTOR: · Zbl 0488.62018
[40] MacDonald, I. L. and Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-Valued Time Series . Chapman and Hall, London. · Zbl 0868.60036
[41] Mann, H. B. and Wald, A. (1943). On the statistical treatment of linear stochastic difference equations. Econometrica 11 173–220. JSTOR: · Zbl 0063.03773
[42] Mevel, L. (1997). Statistique asymptotique pour les modèles de Markov cachés. Ph.D. thesis, Univ. Rennes 1.
[43] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability . Springer, Berlin. · Zbl 0925.60001
[44] Ng, W., Larocque, J. and Reilly, J. (2001). On the implementation of particle filters for DOA tracking. In Proc. IEEE International Conference on Acoustics , Speech and Signal Processing 5 2821–2824. IEEE, Washington.
[45] Nielsen, S. F. (2000). The stochastic EM algorithm: Estimation and asymptotic results. Bernoulli 6 457–489. · Zbl 0981.62022
[46] Orton, M. and Fitzgerald, W. (2002). A Bayesian approach to tracking multiple targets using sensor arrays and particle filters. IEEE Trans. Signal Process. 50 216–223. · Zbl 1369.94250
[47] Pitt, M. K. (2002). Smooth particle filters for likelihood evaluation and maximisation. Technical Report 651, Dept. Economics, Univ. Warwick.
[48] Shiryaev, A. N. (1996). Probability , 2nd ed. Springer, New York. · Zbl 0909.01009
[49] Susmel, R. (2000). Switching volatility in private international equity markets. Internat. J. Finance Economics 5 265–283.
[50] Tanner, M. A. (1996). Tools for Statistical Inference. Methods for the Exploration of Posterior Distributions and Likelihood Functions , 3rd ed. Springer, New York. · Zbl 0846.62001
[51] Thorisson, H. (2000). Coupling, Stationarity and Regeneration . Springer, New York. · Zbl 0949.60007
[52] Tugnait, J. K. (1982). Adaptive estimation and identification for discrete systems with Markov jump parameters. IEEE Trans. Automat. Control 27 1054–1065. [Correction (1984) 29 286.] · Zbl 0494.93045
[53] Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. Ann. Math. Statist. 20 595–601. · Zbl 0034.22902
[54] Yao, J.-F. and Attali, J.-G. (2000). On stability of nonlinear AR processes with Markov switching. Adv. in Appl. Probab. 32 394–407. · Zbl 0961.60076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.